
M A N N I N G

Jeffrey Palermo
Ben Scheirman
Jimmy Bogard

FOREWORD BY PHIL HAACK

IN ACTION

ASP.NET MVC in Action

ASP.NET MVC
 in Action

WITH MVCCONTRIB, NHIBERNATE, AND MORE

JEFFREY PALERMO
BEN SCHEIRMAN

JIMMY BOGARD

M A N N I N G
Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B fax: (609) 877-8256
Greenwich, CT 06830 email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Tom Cirtin
Copyeditor: Betsey Henkels

Manning Publications Co. Proofreader: Elizabeth Martin
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-62-7
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09

http://www.manning.com

brief contents
1 ■ Getting started with the ASP.NET MVC Framework 1

2 ■ The model in depth 24

3 ■ The controller in depth 44

4 ■ The view in depth 65

5 ■ Routing 91

6 ■ Customizing and extending the ASP.NET MVC Framework 119

7 ■ Scaling the architecture for complex sites 152

8 ■ Leveraging existing ASP.NET features 174

9 ■ AJAX in ASP.NET MVC 195

10 ■ Hosting and deployment 216

11 ■ Exploring MonoRail and Ruby on Rails 238

12 ■ Best practices 270

13 ■ Recipes 312
v

contents
foreword xiii
preface xv
acknowledgments xviii
about this book xxi
about the authors xxvi
about the cover illustration xxviii

1 Getting started with the ASP.NET MVC Framework 1
1.1 Picking apart the default application 3

Creating the project 4 ■ Your first routes 7 ■ Running with the
starter project 9

1.2 Your first ASP.NET MVC controller from scratch 14
1.3 Our first view 16
1.4 Ensuring the application is maintainable 18
1.5 Testing controller classes 20
1.6 Summary 22

2 The model in depth 24
2.1 Understanding the basics of domain-driven design 25
2.2 Domain model for this book 26

Key entities and value objects 26 ■ Aggregates 27 ■ Persistence
for the domain model 29
vii

CONTENTSviii

2.3 Presentation model 31
Presentation model responsibilities 31 ■ Projecting from the
domain model 33

2.4 Working with the model 34
Crafting the route 35 ■ Crafting the controller action 35 ■ Test-
driving the feature 36 ■ Finishing the view 39

2.5 Summary 42

3 The controller in depth 44
3.1 The controller action 45
3.2 Simple controllers do not need a view 47
3.3 Testing controllers 50

Testing the RedirectController 50 ■ Making dependencies
explicit 52 ■ Using test doubles, such as stubs and
mocks 53 ■ Elements of a good controller unit test 55

3.4 Simple actions and views 56
3.5 Working with form values 57
3.6 Processing querystring parameters 58
3.7 Binding more complex objects in action parameters 59
3.8 Options for passing ViewData 61
3.9 Filters 62

3.10 Summary 64

4 The view in depth 65
4.1 How ASP.NET MVC views differ from Web Forms 66
4.2 Folder structure and view basics 67
4.3 Overview of view basics 69

Examining the IViewEngine abstraction 70 ■ Understanding
master pages in the ASP.NET MVC Framework 71 ■ Using
ViewData to send objects to a view 73 ■ Partial views can help
decompose a complex screen 76

4.4 Leveraging the view to create dynamic screens 79
Rendering forms with view helpers and data binding 79 ■ Posting
HTML forms back to the server 84 ■ Validation and error
reporting 85 ■ Extending HtmlHelper 88

4.5 Summary 90

CONTENTS ix

5 Routing 91
5.1 What are routes? 92

What’s that curl command? 92 ■ Taking back control of the URL
with routing 94

5.2 Designing a URL schema 95
Make simple, clean URLs 95 ■ Make hackable
URLs 96 ■ Allow URL parameters to clash 96 ■ Keep URLs
short 97 ■ Avoid exposing database IDs wherever possible 97
Consider adding unnecessary information 98

5.3 Implementing routes in ASP.NET MVC 99
URL schema for an online store 102 ■ Adding a custom static
route 103 ■ Adding a custom dynamic route 103 ■ Catch-all
routes 105

5.4 Using the routing system to generate URLs 107
5.5 Creating routes for Code Camp Server 108
5.6 Testing route behavior 111
5.7 Using routing with existing ASP.NET projects 115
5.8 Summary 117

6 Customizing and extending the ASP.NET MVC Framework 119
6.1 Extending URL routing 120
6.2 Creating your own ControllerFactory 125

The ControllerFactory implementation 126 ■ Leveraging IoC for
your controllers 130

6.3 Extending the controller 134
Creating a FormattableController 135 ■ Working with action
filters 138

6.4 Creating a custom view engine 141
6.5 Customizing Visual Studio for ASP.NET MVC 145

Creating custom T4 templates 145 ■ Adding a custom test project
template to the new project wizard 148

6.6 Summary 150

7 Scaling the architecture for complex sites 152
7.1 Taming large controller actions 153
7.2 Whipping views into shape 156

Using and creating view helpers 156 ■ Creating

partials 159 ■ Creating components 163

CONTENTSx

7.3 Using action filters to load common data 165
7.4 Organizing controllers into areas 167

Capturing the area for a request 168 ■ Creating a view engine
with support for areas 168 ■ Tying it all together 171

7.5 Summary 172

8 Leveraging existing ASP.NET features 174
8.1 ASP.NET server controls 175

The TextBox 175 ■ Other common controls 176 ■ The
GridView 178 ■ Where do I get the good stuff? 179

8.2 State management 179
Caching 179 ■ Session state 183 ■ Cookies 184 ■ Request
storage 184

8.3 Tracing and debugging 185
TraceContext 186 ■ Health monitoring 186

8.4 Implementing personalization and localization 187
Leveraging ASP.NET personalization 187 ■ Leveraging
ASP.NET localization 188

8.5 Implementing ASP.NET site maps 192
8.6 Summary 194

9 AJAX in ASP.NET MVC 195
9.1 Diving into AJAX with an example 196
9.2 AJAX with ASP.NET Web Forms 198
9.3 AJAX in ASP.NET MVC 200

Hijaxing Code Camp Server 201 ■ AJAX with JSON 207
Adding alternate view formats to the controller 208 ■ Consuming
a JSON action from the view 210 ■ AJAX helpers 213

9.4 Summary 214

10 Hosting and deployment 216
10.1 Deployment scenarios 217
10.2 XCOPY deployment 218
10.3 Deploying to IIS 7 219
10.4 Deploying to IIS 6 and earlier 223

Configuring routes to use the .aspx extension 224 ■ Configuring
routes to use a custom extension 225 ■ Using wildcard mapping

with selective disabling 226 ■ Using URL rewriting 229

CONTENTS xi

10.5 Automating deployments 232
Employing continuous integration 232 ■ Enabling push-button XCOPY
deployments 233 ■ Managing environment configurations 234

10.6 Summary 237

11 Exploring MonoRail and Ruby on Rails 238
11.1 MonoRail 239

Feature overview 239 ■ ActiveRecord and Windsor 248
MonoRail and Castle features available in ASP.NET MVC 255

11.2 Ruby on Rails 255
Convention over configuration and “the Rails way” 256 ■ Active
Record 260 ■ ActionPack 264

11.3 Summary 269

12 Best practices 270
12.1 Controllers 271

Layer Supertype 271 ■ Filters 272 ■ Smart binders 274
Hardcoded strings 279 ■ Separated view models 280
Validation 281

12.2 Views 283
Strongly typed views 283 ■ Fighting duplication 284 ■ Embracing
expressions 286

12.3 Routes 289
Testing routes 289 ■ Action naming 292

12.4 Testing 294
Controller unit tests 295 ■ Model binder unit tests 298 ■ Action filter
unit tests 301 ■ Testing the last mile with UI tests 303

12.5 Summary 311

13 Recipes 312
13.1 jQuery autocomplete text box 312
13.2 Automatic client-side validation 318
13.3 Data access with NHibernate 325

Functional overview of reference implementation 326
Application architecture overview 327 ■ Domain model—the
application core 328 ■ NHibernate configuration—infrastructure
of the application 330 ■ UI leverages domain model 338
Pulling it together 341 ■ Wrapping up data access with

NHibernate 344

CONTENTSxii

13.4 Designing views with the Spark view engine 345
Installing and configuring Spark 345 ■ Simple Spark view
example 347

13.5 Summary 351

index 353

foreword
The final version of ASP.NET MVC 1.0 was released March 2009 during the Mix 09 con-
ference and nobody was caught by surprise with what was inside—and this is a good
thing. Before the debut of the final version, the product team had released multiple
public previews with full source code in an effort to raise the bar on openness and
community involvement for a Microsoft product.

 Why would we do this?
 Transparency and community involvement are noble goals, but they aren’t neces-

sarily the end goal of a project. What we’re really after is great product. I like to think
of ASP.NET MVC as almost an experiment to demonstrate that transparency and com-
munity involvement were great means to achieving that goal.

 After Preview 2 of ASP.NET MVC was released, we received a lot of feedback from
developers that writing unit tests with ASP.NET MVC was difficult. Jeffrey Palermo, the
lead author of ASP.NET MVC in Action, was among the most vocal in providing feedback
during this time. We took this feedback and implemented a major API change by
introducing the concept of action results, which was a much better design than we
had before. Community involvement helped us build a better product.

 ASP.NET MVC focuses on solid principles such as separation of concerns to provide
a framework that is extremely extensible and testable. While it’s possible to change the
source as you see fit, the framework is intended to be open for extension without need-
ing to change the source. Any part of the framework can be swapped with something
else of your choosing. Don’t like the view engine? Try Spark view engine. Don’t like the
way we instantiate controllers? Hook in your own dependency injection container.
xiii

http://PartyWithPalermo.com
http://PartyWithPalermo.com

FOREWORDxiv

 ASP.NET MVC also includes great tooling such as the Add View dialog, which uses
code generation to quickly create a view based on a model object. The best part is that
all the code generation features in ASP.NET MVC rely on T4 templates and are thus
completely customizable.

 With this book, Jeffrey will share all these features and more, as well as show how to
put them together to build a great application. I hope you enjoy the book and share
in his passion for building web applications. Keep in mind that this book is not only
an invitation to learn about ASP.NET MVC, but also an invitation to join in the commu-
nity and influence the future of ASP.NET MVC. Happy coding!

 PHIL HAACK

 SENIOR PROGRAM MANAGER

 ASP.NET MVC TEAM

 MICROSOFT

preface
My career started in the mid-nineties as one of the early web developers. Web as in
HTTP, that is. Netscape Navigator was helping to grow the number of households with
internet modems because it was more advanced than anything else at the time.
Netscape Navigator 3.0 (1996) and 3.04 (1997) helped households and businesses all
over the world open up the internet for common uses. There is no more common a
task than shopping! With the advent of ecommerce, the internet exploded with a cap-
italist gold run.

 I started web development in the public sector where we leveraged the first threads
of social networking by allowing school district graduates to collaborate with former
classmates. I started my career on the Microsoft platform using IDC (Internet Database
Connector) with HTX (HTML Extension Template). Internet Information Services (IIS) 2.0
gave us fantastic flexibility using ODBC data sources. This was my first use of the “code
nugget,” or <% %> delimiters. IDC/HTX gave way to Active Server Pages (ASP), and I
can still recall following the changes as they broke–ASP 2.0 to ASP 3.0 as well as the awe-
some COM+ integration. I dabbled in CGI, Perl, Java, and C++, but stayed with the
Microsoft platform. Observing the Visual Basic explosion from the sidelines, I learned
the ropes with small utility apps.

 Active Server Pages 3.0 saw the browser wars with Internet Explorer 4, released
with Windows 95, competing with Netscape for market share. Writing web applica-
tions that worked well with both browsers was difficult. IE 5.0 opened the horizons for
intranet applications with proprietary web extensions like the XML data island and
better scripting capabilities. Windows XP shipped with IE 6, which effortlessly cap-
xv

tured the majority of the web browser market. ASP 3.0 put the programmer intimately

PREFACExvi

in touch with HTTP, HTML, and the GET and POST verbs. I remember pulling out
crude frameworks to handle multiple request paths from the same ASP script.

 At the same time ASP 3.0 was enjoying widespread adoption, Struts was taking the
Java web application world by storm. Struts is probably the best known Java MVC frame-
work, although today there are many popular frameworks for the JVM. With ASP 3.0, I
was unaware of the lessons my Java counterparts had already learned, although I felt the
pain of myriad responsibilities lumped into a single ASP script.

 I adopted ASP.NET 1.0 right out of the gate and converted some of my ASP 3.0 sites
to Web Forms. Remember when GridLayout was the default with CSS absolute posi-
tioning everywhere? It was clear that Web Forms 1.0 was geared for VB6 developers
coming over to .NET and getting onto the web. The post-backs and button click han-
dlers were largely foreign to me, but my colleagues who were seasoned VB6ers felt
right at home. ASP.NET 1.1 dropped the GridLayout and forced the developer to
understand HTML and how flow layout works. Down-level rendering was great when
Internet Explorer was the “preferred” browser, and everything else was downlevel. That
paradigm started to break down as Firefox climbed in market share and demanded
standards-compliant markup.

 I became an ASP.NET expert and was a frequent blogger during the .NET 2.0 beta
cycle. I knew every feature and every breaking change from ASP.NET 1.1 to 2.0, and
helped my team adopt 2.0. During the ASP.NET 2.0 era, I started following Martin
Fowler and his Model-View-Presenter writings. I implemented that pattern to pull away
logic from the code-behind file, which had become bloated. Java developers, in 2005,
were enjoying a choice of several MVC frameworks for the web. I, on the other hand, was
wrestling Web Forms into Model-View-Presenter and test-driven development submis-
sion. It was exhausting, but what was the alternative?

 In 2006, with a job change, I jumped over to software management and smart client
development with WinForms. With the familiar clunkiness of the code-behind model,
and a development team to manage, I implemented the Model-View-Controller pattern
with the WinForm class as the view. It was a breath of fresh air. UI development was
seamless, and the controllers were a natural boundary from the domain model to the
UI. In 2007, I jumped back into web development and begrudgingly implemented
Model-View-Presenter with Web Forms again. In retrospect, I wish I had adopted Mono-
Rail, another Model-View-Controller framework for .NET.

 In February 2007, Scott Guthrie (ScottGu) created a prototype of what would
become the ASP.NET MVC framework. He had heard from many customers about the
difficulties with Web Forms and how they needed a simpler, more flexible way to write
web applications. At the 2007 MVP Summit, Scott sought input from a small group of
Microsoft MVPs. Darrell Norton, Scott Bellware, Jeremy Miller, and I validated the vision
of his prototype and gave initial input that would end up coded into the framework.

 When Scott Guthrie presented, to an audience in Austin, Texas, a working proto-
type and vision for ASP.NET MVC at the AltNetConf open spaces conference in Octo-
ber 2007, I knew instantly that this is what I’d wished for all along. As a long-time web
developer, I understood HTTP and HTML, and this, I believe, is what ASP.NET 1.0

should have been. It would have been such a smooth transition from ASP 3.0 to

http://www.manning.com/ASP.NETMVCinAction

PREFACE xvii

ASP.NET MVC. I can claim the first ASP.NET MVC application in production because I
convinced Scott to give me a copy of his prototype and revised my www.partywithpal-
ermo.com registration site, launching it in November 2007 on one of Rod Paddock’s
servers at DashPoint.

 What Microsoft did with the ASP.NET MVC release cycle was an unprecedented
project in the Developer Division. The project was released at least quarterly on the
CodePlex site, source code and all. It was also developed using test-driven develop-
ment as the software construction technique. Full unit test coverage is included in the
source code download, and ASP.NET MVC 1.0 was released under the MS-PL, and OSI-
approved open source license.

 ASP.NET MVC works the way the web works; it’s a natural fit. Although Microsoft is
last to the table with a Model-View-Controller framework for its development plat-
form, this framework is a strong player. Its design focuses on the core abstractions
first. It is conducive to extension by the community. In fact, the same week the first
Community Technology Preview (CTP) was released, Eric Hexter and I launched the
MvcContrib open-source project with an initial offering of extensions that integrated
with the ASP.NET MVC Framework.

 At the time of publishing this book, the ASP.NET MVC framework is a frequently
used tool at Headspring Systems, where I facilitate the consulting practice. For the
.NET industry as a whole, I predict that ASP.NET MVC will be considered the norm for
ASP.NET development by 2011.

 New developers are coming to the .NET platform every day, and for web develop-
ers, ASP.NET MVC is easy to adopt and learn. Because of the decreased complexity, the
barrier to adoption is lowered, and because of the simplicity, it can grow to meet the
demands of some of the most complex enterprise systems.

 When Manning Publications approached me to write a book on ASP.NET MVC, I
was already a frequent blogger on the topic and had published an article on the
framework in CoDe magazine. Even so, I knew writing a book would be a tremendous
challenge. This book has been in progress for over a year, and I am excited to see it
published. I learned quite a bit from Ben and Jimmy throughout this project, and I
learned so much more about the framework by writing about it. This knowledge has
direct and immediate benefit to our client projects.

 Our hope is that our book will stay with you even after you have written your first
application. Writing a book published just after a 1.0 release is challenging because
many things are discovered after a technology has been out in the wild. Leveraging it
on client projects immediately has definitely helped increase the quality of informa-
tion contained in the book because it is derived from hands-on experience.

 Although other platforms have benefited from Model-View-Controller frameworks
for many years, the MVC pattern is still foreign to many .NET developers. This book
explains how and when to use the framework; also the theory and principles behind
the pattern as well as complimentary patterns. We hope that this book will enlighten
your understanding of an indispensable technology that’s simple to learn.
 JEFFREY PALERMO

www.partywithpalermo.com
www.partywithpalermo.com

acknowledgments
We’d like to thank Scott Guthrie for seeing the need in the .NET space for this frame-
work. Without his prototype, vision, and leadership, this offering would still not exist
in the .NET framework. We would also like to recognize the core ASP.NET MVC team
at Microsoft, headed by Phil Haack, the Program Manager for ASP.NET MVC. Other
key members of the ASP.NET MVC team are Eilon Lipton (Lead Dev), Levi Broderick
(Dev), Jacques Eloff (Dev), Carl Dacosta (QA), and Federico Silva Armas (Lead QA).
We would also like to extend our thanks to the large number of additional staff who
worked on packaging, documenting and delivering the ASP.NET MVC framework as a
supported offering from Microsoft. Even though this framework is small compared to
others, this move from Microsoft is shifting the mental inertia of the .NET portion of
the software industry.

 This book employed three working authors, all consultants with multiple projects,
along with startup help and a chapter draft by Dave Verwer. The book efforttook over
a year and a half, starting with the first Community Technology Preview of the
ASP.NET MVC Framework. This dynamic required tremendous support from the staff
at Manning Publications. We would like to thank them for their patience and support
throughout the project. In particular, we would like to thank acquisitions editor
Michael Stephens and editor Tom Cirtin for their leadership. Michael saw the need
for this book and contacted me about writing it. Tom was very supportive and patient
and helped the three of us through our first book publication.

 Our independent technical reviewers were outstanding. They offered advice and
opinionated viewpoints on each chapter during development, and without that input,
xviii

http://partywithpalermo.com
http://flux88.com
http://flux88.com

ACKNOWLEDGMENTS xix

the book would not be as good as we hope it is. Our sincere thanks goes to Phil Haack
for reviewing the manuscript and writing a brilliant foreword. Many thanks should
also go to Freedom Dumlao, who painstakingly reviewed each chapter to ensure the
message would apply in the best manner to the target audience. Jeremy Skinner was
also a boon to the project. Jeremy tested and retested every code listing and code sam-
ple in the book as well as in the many Visual Studio projects that come with the book.
His attention to detail, backed up by his vast experience with ASP.NET MVC and Mvc-
Contrib, has contributed greatly to this book.

 Manning invited the following reviewers to read the manuscript at different stages
of development and to send their comments: Mark Monster, Andrew Siemer, Benja-
min Day, Frank Wang, Derek Jackson, Tim Binkley-Jones, Marc Gravell, Alessandro
Gallo, Josh Heyer, Peter Johnson, Jeremy Anderson, and Alex Thissen.

 This book has also benefited from outside technical reviewers who volunteered to
read parts of the manuscript and provided feedback: Rod Paddock, Craig Shoemaker,
Hamilton Verissimo, Matt Hinze, Kevin Hurwitz, Blake Caraway, Nick Becker, Mahen-
dra Mavani, Eric Anderson, Rafael Torres, Eric Hexter, Tom Jaeschke, Matt Hawley,
and Sebastien Lambla.

 Before this book went to print, a large number of people purchased the PDF edi-
tion of the book by participating in the MEAP, Manning’s Early Access Program. We
would like to thank those readers for their comments and participation early, and
throughout the manuscript portion of the project, especially Eric Kinateder, Ben
Mills, Peter Kellner, Jeff P., Orlando Agostinho, Liam McLennan, Ronald Wildenberg,
Max Fraser, Gudmundur.Hreidarsson, Kyle Szklenski, Philippe Vialatte, Lars Zeb,
Marc Gravell, Cody Skidmore, Mark Fowler, Joey Beninghove, Shadi Mari, Simone
Chiaretta, Jay Smith, Jeff Kwak, and Mohammad Azam.

JEFFREY PALERMO

I would like to thank my beautiful wife, Liana, for her support and patience through-
out this project. Liana gave birth to our daughter, Gwyneth Rose, shortly before the
book was started, and the motivation to spend more time with my growing family
pushed me to complete the book. Thanks also to my parents, Peter and Rosemary Pal-
ermo, for instilling in me a love of books and learning from an early age.

BEN SCHEIRMAN

My thanks and utmost appreciation go out to my amazing wife, Silvia. Her continued
support and encouragement of my extracurricular work led to writing this book in the
first place. I would also like to recognize one of my university mentors, Venkat Subra-
maniam. With his guidance, I found my passion in software development and strived
to learn more and push the envelope. He was an inspiration in my career. Finally I’d
like to thank my wonderful children, Andréa, Noah, and Ethan (and most recently
Isaac and Isabella), who showed immense patience and encouragement while their
dad was banging away at the keyboard in the late hours of the night.

ACKNOWLEDGMENTSxx

JIMMY BOGARD

Thanks to my wife, Sara, without whose love, support, and patience, my contribution
to this project would not have been possible. Also, thanks to my family for putting up
with a strange little bookworm all those years. Finally, thanks to my high school com-
puter science teacher, Scotty Johnson, who showed me the rewards that a true passion
for the craft can bring.

about this book
The ASP.NET MVC Framework was a vision of Scott Guthrie in early 2007. With a proto-
type demonstration in late 2007 as well as a key hire of Phil Haack as the Senior Pro-
gram Manager of the feature team, Scott made the vision a reality. At a time when the
.NET community was becoming frustrated that other platforms had great MVC frame-
works like Tapestry, Rails, and so on, Web Forms was losing favor as developers strug-
gled to make it do things previously unimagined when it became public in 2001. Castle
MonoRail was a very capable framework and continues to have strong leadership
behind it, but the broader .NET industry needed a change from Web Forms. Phil
Haack, with his experience outside of Microsoft as well as in the open source commu-
nity, immediately came in and led the ASP.NET MVC Framework team to a successful 1.0
release that the .NET community is excited about.

 ASP.NET MVC has the benefit of lessons learned from other popular MVC frame-
works such as Struts, WebWork, Tapestry, Rails, and MonoRail. It also came about as
C# starts to push away its fully statically typed roots. The language enhancements
introduced with .NET 3.5 have been fully leveraged in the ASP.NET MVC Framework,
giving it a huge advantage over frameworks that came before as well as all the Java
frameworks that are tied to the currently supported Java syntax.

 For people who have a diversified software background, ASP.NET MVC is a great
addition to the Visual Studio development experience. For those who began their
software career with .NET 1.0 or later, it is a fundamental shift in thinking since they
grew up with Web Forms being “normal” web development.

 This book attempts to start at a point that is past the documentation and online
xxi

tutorials available on the ASP.NET MVC website at http://www.asp.net/mvc/. If you are

http://www.asp.net/mvc/

ABOUT THIS BOOKxxii

just getting started with ASP.NET, you will want to read some of the older books cover-
ing the ASP.NET pipeline and server runtime. Because ASP.NET MVC layers on to
ASP.NET, it is important to understand the fundamentals. If you are a current ASP.NET
developer, you will find that this book does not insult your intelligence. It is a fast-
paced book aimed at giving you the why and not just the how.

 Since ASP.NET MVC is a new technology offering you can expect several books
to cover the topic. This is a framework that is not sitting still. Since its release in
March 2009, several books have been released, but the community is finding new
and better ways to use the framework. The newest ideas make their way to the Mvc-
Contrib project, and to public release frequently as new additions are contributed.
Because of this dynamic, this book covers ASP.NET MVC with MvcContrib sprinkled
throughout. The authors are all actively developing with the framework, and MvcCo-
ntrib plays a vital part in every application. This books aims to have a long-lasting
place on your bookshelf. The API will evolve, but the principles behind using an
MVC framework as well as the ways to structure URLs, tests, and application layers are
more durable. With this, we hope that this book serves not only as a rigorous foray
into ASP.NET MVC development but also as a guide toward developing long-lived web
applications on the .NET platform.

 We hope that the arrival of this book is considered good timing because the text
was written with the perspective of the roadmap of ASP.NET MVC 2.0 in mind. With the
roadmap plans released and the first CTP of v2 already available, the techniques in this
book are useful now and are also relevant for ASP.NET MVC v2, which is quickly
approaching. We hope this book will help you start on your way to creating many
maintainable, long-lived applications on the new version of ASP.NET.

Who should read this book?
This book is written for senior developers working with ASP.NET. The authors are
senior and strong leaders in their companies, local community, and the industry. All
three authors are recognized by Microsoft with the Microsoft Most Valuable Profes-
sional (MVP) award. With that in mind, we felt it appropriate to write a book aimed at
senior members of the software team. With the market flooded with beginner books
and books that reformat online documentation and tutorials, we attempted to write a
book that might leave some beginners behind but at the same time challenge senior
developers and architects. Whether or not you are familiar with other MVC frame-
works, this book will push your knowledge further than you are accustomed to when
reading a technology book.

 The book comes with a full reference implementation in production at http://
CodeCampServer.com. CodeCampServer was developed by the authors and is open
source with many other contributors at this time. CodeCampServer is an ASP.NET MVC
application aimed at hosting user group websites and websites for .NET user group
conferences, frequently called Code Camps. The codebase was developed using Onion
Architecture, domain-driven design, test-driven development, and inversion of con-
trol. The techniques espoused in the book are implemented in the project. Many of

http://CodeCampServer.com
http://CodeCampServer.com

ABOUT THIS BOOK xxiii

the code examples in the book are detailed explorations of parts of CodeCampServer.
Although the project will continue to evolve after this book is published, the princi-
ples with which it and the text were written are timeless and portable beyond a single
version of the technology.

 Because in any real project, like CodeCampServer, you use many libraries for specific
things, we did not shy away from using these as well. We feel that avoiding other libraries
for the sake of simplicity also makes it difficult for the reader to apply the knowledge
gained while reading. With that in mind, we use popular libraries such as MvcContrib,
NAnt, NUnit, StructureMap, Windsor, Castle, RhinoMocks, Log4Net, NHibernate,
Tarantino, AutoMapper, Iesi.Collections and many others. Because real projects have a
collage of libraries, we felt that learning ASP.NET MVC in this realistic setting was most
appropriate. We have taken care to separate concerns when necessary. We always sepa-
rate data access from the domain model and the presentation layer, and we separate pre-
sentation model from views; you will not see simplistic examples such as performing a
query directly from a UI controller. This is bad practice in anything but the most trivial
applications such as that serving http://PartyWithPalermo.com (a three-page site).
Real applications have many screens, the embedding data access and other logic in the
UI is a recipe for a codebase that is very costly to maintain.

 We’ve done our best to call out where we expect existing ASP.NET knowledge to tie
the example together, but if you find yourself wondering what an HTTP module is, you
will probably want to read one of the earlier ASP.NET books.

Roadmap
Chapter 1 throws the reader directly into code by picking apart the default project
template. After a primer on routes, the text moves through a simple controller and
view and moves to initial maintainability. The chapter follows up by covering the
basics of testing controllers.

 Chapter 2 moves into the model. It covers not only the domain model of the appli-
cation but also the need for different types of models depending on usage, such as a
presentation model. Because the authors consider using a presentation model, com-
monly called view model, essential for the maintainability for nontrivial systems, it is
used right away.

 Chapter 3 covers controller details. The controller can be very simple or quite
complex, and the text covers both. The chapter explores working with form values
and querystring values, and it covers model binding, which is one of the most-needed
abstractions for ASP.NET to date. Chapter 3 concludes after outlining all the available
extension points that are built in.

 Chapter 4 gives further insight into views. After outlining the key abstractions in
the default view engine, it pulls the reader along to essential concepts such as layouts,
partial views, and building your own validation and HTML helpers.

 Chapter 5 goes deeper than you will ever need into routing. Although most proj-
ects will not need this amount of advanced routing, we explore the topic thoroughly.
We cover the why and not just the how of crafting URLs. From designing a URL schema

http://PartyWithPalermo.com

ABOUT THIS BOOKxxiv

to adding dynamic routes, this chapter is a comprehensive guide to the most flexible
routes you will need.

 Chapter 6 explores the many ways to customize and extend the ASP.NET MVC
Framework. It starts with custom route handlers and moves to when, why, and how to
create your own controller factory. Two Inversion of Control containers are covered in
the controller factory section: Windsor and StructureMap. Because most nontrivial
applications will want to use a custom controller factory, this section is covered thor-
oughly. Next the chapter moves through the ways to extend the controller with action
invokers and filters. After a custom view engine and using the new T4 templates, the
reader will have the full picture of the available extension points.

 Chapter 7 communicates ways to scale the architecture for more complex sites.
The first is solving the problem of large controller actions and how to move multiple,
ill-placed responsibilities out of the controller. View helpers are also covered in more
detail as well as techniques for segmenting large views into a number of cohesive
smaller ones. The chapter also covers larger issues encountered with action filters.

 Chapter 8 offers ways to leverage existing ASP.NET features in an ASP.NET MVC appli-
cation. The text covers how to use existing server controls, then moves to caching, both
output caching and using request level caching provided by HttpContext.Items. It then
moves through tracing, health monitoring, site maps, personalization, localization,
linq, cookies, session state, and configuration. Because ASP.NET MVC is an add-on to
ASP.NET and not a replacement, this chapter ensures the reader understands where all
these existing features fit.

 Chapter 9 has been one of the most popular chapters in the early access program
because now, in mid-2009, AJAX is a hot topic. We first lay down our opinionated view
on AJAX and then outline the most common uses and techniques for it starting with
simple HTML replacement. The chapter covers implementing a REST API with con-
trollers as well as some of the third-party libraries and controls available for AJAX. The
chapter also outlines ways to make controller actions automatically support AJAX.

 Chapter 10 covers hosting and deployment. Though not as sexy of a topic as
AJAX, it is critical to understand how to deploy applications built on this framework
to IIS5/6/7/7.5. All versions are covered in detail as well as the implications of using
extensions, wildcard mappings, and URL rewriting. After covering XCopy deploy-
ment, the chapter delivers techniques for managing production and development
environment settings. The chapter closes out with an autodeployment example that
is similar to how CodeCampServer is autodeployed in the wild.

 Chapter 11 explores MonoRail and Ruby on Rails as a comparison and benchmark
against ASP.NET MVC. It starts out with MonoRail and covers validation, data access
with ActiveRecord, as well as the view engine choices. Rails follows closely on its heels
with “The Rails Way,” ActiveRecord and ActionPack. The purpose of the chapter is to
give the reader some familiarity with competing MVC frameworks because good ideas
come from everywhere.

ABOUT THIS BOOK xxv

 Chapter 12 uses the controversial title, “Best Practices.” We outline the context
that these practices support. We outline best practices for controllers, views, routes,
and testing. Each topic has very opinionated recommendations borne from real-world
usage of ASP.NET MVC in this type of application.

 Chapter 13 provides four comprehensive recipes that can be easily implemented
on your project. One of the larger chapters, it starts with using jQuery for an autocom-
plete text box and then moves on to how to implement automatic client-side data vali-
dation. Data access with NHibernate is the next recipe and provides a full vertical slice
implementation for calling data access backed by NHibernate from controllers. It out-
lines how to map and configure NHibernate as well as some basic mapping and query-
ing techniques. The chapter wraps up with a full Spark view engine implementation
for those who don’t like the tag format of Web Forms.

Code conventions and downloads
All source code in listings or in text is in a fixed-width font like this to separate it
from ordinary text. Code annotations accompany many of the listings, highlighting
important concepts. In some cases, numbered bullets link to explanations that follow
the listing.

 The source code for the examples in this book is available online from the pub-
lisher’s website at http://www.manning.com/ASP.NETMVCinAction.

Author Online
The purchase of ASP.NET MVC in Action includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
ASP.NETMVCinAction.

 This page provides information about how to get on the forum once you’re regis-
tered, what kind of help is available, and the rules of conduct on the forum. Man-
ning’s commitment to our readers is to provide a venue where a meaningful dialogue
between individual readers and between readers and the authors can take place. It’s
not a commitment to any specific amount of participation on the part of the authors,
whose contribution to the book’s forum remains voluntary (and unpaid). We suggest
you try asking them some challenging questions, lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

http://www.manning.com/ASP.NETMVCinAction
http://www.manning.com/ASP.NETMVCinAction
http://www.manning.com/ASP.NETMVCinAction

about the authors
JEFFREY PALERMO is the CTO of Headspring Systems. Jeffrey spe-
cializes in Agile management coaching and helps companies
double the productivity of software teams. He is instrumental
in the Austin software community as a member of AgileAustin
and a director of the Austin .NET User Group. Jeffrey has been
recognized by Microsoft as a “Microsoft Most Valuable Profes-
sional” (MVP) in Solutions Architecture for five years and par-
ticipates in the ASPInsiders group, which advises the ASP. NET

team on future releases. He is also certified as a MCSD.NET and ScrumMaster. Jeffrey
has spoken and facilitated at industry conferences such as VSLive, DevTeach, the Micro-
soft MVP Summit, various ALT.NET conferences, and Microsoft Tech Ed. He also speaks
to user groups around the country as part of the INETA Speakers’ Bureau. His web sites
are headspringsystems.com and jeffreypalermo.com. He is a graduate of Texas A&M Uni-
versity, an Eagle Scout, and an Iraq war veteran. Jeffrey is the founder of the Code-
CampServer open-source project and a cofounder of the MvcContrib project.

 Jeffrey Palermo is responsible for the popular Party with Palermo events that precede
major Microsoft-focused conferences. Started in June of 2005, Party with Palermo has
grown in popularity and size. Typical events host hundreds of people for free drinks and
food and door prizes. It is the perfect way to hook up with friends and colleagues before
the conference week begins. You can see past and upcoming parties at http://party-
withpalermo.com where the website has run on ASP.NET MVC since October 2007.
xxvi

http://partywithpalermo.com
http://partywithpalermo.com

ABOUT THE AUTHORS xxvii

BEN SCHEIRMAN is a software developer specializing in .NET.
He has worked extensively on the web on various platforms
and languages. Ben is a Microsoft MVP, Microsoft ASP Insider,
and Certified ScrumMaster. When not programming, Ben
enjoys speaking, blogging, spending time with his wife and
five wonderful children, or voiding warranties on his latest
gadgets. Ben is a Principal Consultant with Sogeti in Hous-
ton, Texas. Read his blog online at http://flux88.com.

JIMMY BOGARD is a Principal Consultant at Headspring Systems.
He is an agile software developer with six years of professional
development experience. He has delivered solutions from
conception to production for many clients. The solutions
delivered by Jimmy range from shrink-wrapped products to
enterprise ecommerce applications for Fortune 100 custom-
ers. He is also a Microsoft Certified Application Developer
(MCAD) and is an active member in the .NET community, lead-
ing open-source projects, giving technical presentations and facilitating technical book
clubs. Currently, Jimmy is the lead developer on the NBehave project, a Behavior-Driven
Development framework for .NET, AutoMapper, a convention-based object-to-object
mapper and the facilitator of the Austin Domain-Driven Design Book Club. Jimmy is a
member of the ASPInsiders group, and received the “Microsoft Most Valuable Profes-
sional” (MVP) award for ASP.NET in 2009.

About the technical reviewers
JEREMY SKINNER lives in the UK and works as a software devel-
oper. Most of his work involves writing web applications using
ASP.NET and C#. He is involved with several open-source proj-
ects including MvcContrib, Fluent Validation, and Fluent
Linq to Sql.

 Jeremy has been invaluable to this book project by reviewing
each paragraph of text, each figure, and code example. He
found and corrected numerous errors, and this book would

not be a good book without him. He is capable of being an author himself, and we fully
expect full books out of him in the future. Jeremy’s experience with the ASP.NET MVC
framework as well as popular third-party frameworks such as Castle has made him a
strong reviewer. His blog can be found at http://www.jeremyskinner.co.uk/.

FREEDOM DUMLAO is a software engineer working primarily in .NET. He has a blog at
http://weblogs.asp.net/FreedomDumlao/. Freedom reviewed the first drafts of each
chapter and made critical suggestions for improvement. His perspective was very valu-
able to the quality of the book.

http://flux88.com
http://www.jeremyskinner.co.uk/
http://weblogs.asp.net/FreedomDumlao/

about the cover illustration
The figure on the cover of ASP.NET MVC in Action is captioned “L’Habitant de Ver-
sailles” which means a resident of the town of Versailles. Today, Versailles is a suburb
of Paris with a population of over 90,000, but in the past it was famous both as the cap-
ital city of France for a number of years in the 17th and 18th centuries and for the Pal-
ace of Versailles around which the city grew.

 The illustration is taken from a 19th century edition of Sylvain Maréchal’s four-
volume compendium of regional dress customs published in France. Each illustration
is finely drawn and colored by hand. The rich variety of Maréchal’s collection reminds
us vividly of how culturally apart the world’s towns and regions were just 200 years ago.
Isolated from each other, people spoke different dialects and languages. In the streets
or in the countryside, it was easy to identify where they lived and what their trade or
station in life was just by what they were wearing.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

xxviii

Getting started with
 the ASP.NET MVC

 Framework
Depending on how long you’ve been building web applications on the Microsoft
platform, you’ll relate to some or all of the following pain. In the 1990s, developers
built interactive websites using executable programs that ran on a server. These pro-
grams (Common Gateway Interface [CGI] was a common technology at the time)
accepted a web request and were responsible for creating an HTML response. Tem-
plating was ad hoc, and the programs were difficult to write, debug, and test. In the
late 1990s, Microsoft, after a brief stint with HTX templates and IDC connectors,
introduced Active Server Pages, or ASP. ASP brought templating to web applications.

This chapter covers
■ Running the starter project
■ Progressing through Hello World examples
■ Routing basics
■ Unit testing basics
1

2 CHAPTER 1 Getting started with the ASP.NET MVC Framework

The server page was an HTML document with dynamic script mixed in. Although this
was a big step forward from the alternatives, the world soon saw massive server pages
with code indecipherable from the markup.

 In early 2002, along came ASP.NET and the Web Forms Framework. Web Forms
were a complete shift for ASP developers, partly because they moved most program
logic into a class file (called a code-behind) and replaced the HTML markup with
dynamic server controls written in an XML syntax. Although performance increased,
and the debugging experience improved, new problems arose.

 The new server-side postback event lifecycle caused newsgroups to explode with
activity as confused developers searched for that magic event in which to add those two
simple lines of code necessary to make the page work as needed. ViewState, although
good in theory, broke down as the application scaled with complexity. Simple pages
surpassed 100KB in size, as the entire state of the application had to be stored in the
output of every generated page. Development best practices were ignored as tools like
Visual Studio encouraged data access concerns like SQL queries to be embedded
within view logic. Perhaps the greatest sin of the Web Forms Framework was the tight
coupling to everything in the System.Web namespace. There was no hope of unit test-
ing any code in the code-behind file, and today we see Page_Load methods that take
several trees to print. Although early versions of Web Forms had some drawbacks,
ASP.NET and the larger .NET Framework have made huge inroads into the web appli-
cation market. Today we see major websites such as CallawayGolf.com, Dell.com, News-
week.com, WhiteHouse.gov, and Match.com all running on ASP.NET. The platform has
proven itself in the marketplace, and when combined with IIS running on Windows,
ASP.NET can easily support complex web applications running in large data centers.
The ASP.NET MVC Framework leverages the success of ASP.NET and Web Forms to pro-
pel ASP.NET forward as a leader in the web application development space.

 The ASP.NET MVC Framework has been introduced to simplify the complex parts
of Web Forms application development while retaining the power and flexibility of
the ASP.NET pipeline. The ASP.NET infrastructure and request pipeline, introduced in
.NET 1.0, stay the same, and ASP.NET MVC provides support for developing ASP.NET
applications using the Model-View-Controller web presentation pattern. The concerns
of the data model, the application logic, and data presentation are cleanly separated,
with the application logic kept in a class separated from hard dependencies on how
the data will be presented. Server pages have become simple views, which are nothing
more than HTML templates waiting to be populated with objects (models) passed in
by the controller. The postback event lifecycle is no more, and ViewState is no longer
necessary. In this chapter, we’ll walk through your first lines of code built on top of the
ASP.NET MVC Framework. After this primer, you’ll be ready for more advanced topics.

 In this chapter, and throughout the book, we assume that the reader has knowl-
edge of ASP.NET. If you’re new to ASP.NET, please familiarize yourself with the ASP.NET
request pipeline as well as the .NET runtime. Throughout this chapter, we’ll take you
through creating an ASP.NET MVC Framework web application project, creating your

http://www.codeplex.com/aspnet
http://www.codeplex.com/aspnet
http://www.codeplex.com/aspnet

3Picking apart the default application

first routes, controllers, and views. We’ll comb through the default application and
explain each part. Then we’ll extend it, and you’ll create your first controller and
view. First, let’s explore the MVC pattern and the default application template pro-
vided with the framework.

1.1 Picking apart the default application
In this section, we’ll explain what the MVC pattern is and create our first ASP.NET
MVC Web Application. We’ll focus first on the controller because in the Model-View-
Controller triad, the controller is in charge and decides what model objects to use
and what views to render. The controller is in charge of coordination and executes
first when the web request comes in to the application. The controller is responsible
for deciding what response is appropriate for the request.

 The Model-View-Controller pattern is not new. A core tenet of the MVC pattern is
to separate control logic from the view, or a screen. A view is only responsible for ren-
dering the user interface. By separating domain logic and decoupling data access and
other calls from the view, the UI can stay the same even while logic and data access
changes within the application. Figure 1.1 shows a simple diagram of the MVC triad.
Note that the controller has a direct relationship with the view and the model, but the
model does not need to know about the controller or the view. The web request will
be handled by the controller, and the controller will decide which model objects to
use and which view objects to render.

Integrating with or migrating from ASP.NET Web Forms applications
Can we create screens that leverage the ASP.NET MVC Framework while others con-
tinue to work using Web Forms? Of course we can. They can run side by side until the
entire application is MVC. Using the MVC framework is not an all-or-nothing proposi-
tion. There are many, many ASP.NET applications in production using Web Forms. If
a software team wants to migrate the application from Web Forms to ASP.NET MVC,
it’s possible to do a phased migration and run the two side by side in the same App-
Domain. ASP.NET MVC does not replace core ASP.NET libraries or functionality. Rath-
er, it builds on top of existing ASP.NET capabilities. The UrlRoutingModule that we
registered in the web.config file causes an incoming URL to be evaluated against the
existing routes. If a matching route is not found, ASP.NET will continue on and use
Web Forms to fill the request, so it’s pretty simple to mix and match features during
a migration or for the purpose of application extension.

Although Web Forms is not going away any time soon, we believe that controllers, ac-
tions, and views will be the preferred way to write ASP.NET applications going into the
future. Although Microsoft will continue to support both options (and active develop-
ment on the next version of Web Forms continues), we believe that the ASP.NET MVC
Framework will be favored over Web Forms much like we see C# favored over VB in
documentation, industry conferences, and technical books.

4 CHAPTER 1 Getting started with the ASP.NET MVC Framework

To begin, we’ll open up Visual Studio 2008 SP1 and create our project. The edition of
Visual Studio 2008 makes a difference. Although there are some workarounds to
using the ASP.NET MVC Framework without SP1, System.Web.Abstractions.dll and
System.Web.Routing.dll are in the GAC (global assembly cache) as of SP1. You can
use Visual Studio 2008 Professional, a Team Edition SKU, or Visual Web Developer
Express SP1. Note that the ASP.NET MVC Framework builds on top of Web Application
Projects, and although it’s possible to make it work with websites, the development
experience is optimized for use with Web Application Projects.

NOTE You must already have Visual Studio 2008 SP1 or Visual Web Develop-
er 2008 SP1, .NET 3.5 SP1, and the ASP.NET MVC Framework installed to
proceed. The MVC framework is an independent release that builds
upon .NET 3.5 Service Pack 1. The examples in this book will use Visual
Studio 2008 SP1, but you can find information on using the free Visual
Web Developer Express 2008 SP1 on the ASP.NET MVC website: http://
www.asp.net/mvc/.

We’ll begin in Visual Studio 2008 Professional SP1 by creating a new ASP.NET MVC
Web Application project. When you pull up the New Project dialog, make sure you
have .NET Framework 3.5 selected. If you have .NET Framework 3.0 or 2.0 selected,
Visual Studio will filter the list, and you’ll not see the project template for ASP.NET
MVC Web Application. Now that you understand the basics of the pattern and how to
install the MVC framework, we’ll dive into our first project.

1.1.1 Creating the project

Creating your first ASP.NET MVC Web Application project will be one of the simplest
things you do in this chapter. In Visual Studio 2008, when you have .NET Framework 3.5
selected as the target framework, you’ll see a new project template named ASP.NET MVC
Web Application. Choose this project template. The new project dialog will look like
that shown in figure 1.2.

 We’re going to be working with a C# ASP.NET MVC Web Application project. You
have two options for creating the project. When you click OK, the IDE will ask you about
creating a test project. Decide if you’d like it done for you or if you’d rather create the
unit test project yourself. For this example, we’ll choose the ASP.NET MVC Web Appli-
cation with the test project. Figure 1.3 shows the solution structure of the default Visual
Studio template. Since this is not a beginners’ book, we’ll skip the hand-holding and go
straight into the project.

Model

Controller

View

Figure 1.1 A simple diagram depicting the
relationship between the Model, View, and
Controller. The solid lines indicate a direct
association, and the dashed lines indicate an
indirect association (graphic and description
used with permission from Wikipedia).

http://www.asp.net/mvc/
http://www.asp.net/mvc/

5Picking apart the default application

NOTE More ASP.NET MVC starter kits and sample applications are available from
the community on the ASP.NET website. At the time of writing, http://
www.asp.net/community/projects/ and http://www.asp.net/mvc/ have
several starter kits and sample applications for starting ASP.NET MVC proj-
ects (as well as ASP.NET Web Forms starter kits). The options include

■ Kigg Starter Kit—a Digg-like application
■ Contact Manager Sample Application
■ Storefront Starter Kit

Although the starter kits are quite basic, you should also check out more
complete starter kits like those found at http://CommunityForMvc.net.
This site contains a bare-bones template as well as one complete with
MvcContrib, StructureMap, NHibernate, NUnit, NAnt, AutoMapper,
Tarantino, Naak, NBehave, Rhino Mocks, WatiN, Gallio, Castle, 7zip,
and more.

If you’re new to .NET development in general, you should first become
familiar with Microsoft’s default template. Then use a more robust starter
kit or sample application provided by the community to have a better
jumping-off point. When you have mastered the framework, think about
contributing your own starter kits.

Figure 1.2 The MVC Web Application project is a project template added to the C# and VB.NET sections
of the New Project dialog. It’s only available when you have .NET Framework 3.5 selected as the target
framework.

http://www.asp.net/community/projects/
http://www.asp.net/community/projects/
http://www.asp.net/mvc/
http://CommunityForMvc.net

6 CHAPTER 1 Getting started with the ASP.NET MVC Framework

Figure 1.3 The default structure for a
web application project using the
ASP.NET MVC Framework uses
conventions for the placement of files.

The first thing to notice is that in contrast to
the very sparse structure of a default Web
Forms project template, the default MVC tem-
plate creates several folders: Content, Control-
lers, Models, Scripts, and Views. These folders
represent part of the MVC application develop-
ment conventions, which, if adhered to, can
make the experience of developing with the
MVC framework a breeze.

 For now, the most important of these fold-
ers to become familiar with are the three which
have been named after their MVC pattern coun-
terparts (the Model, View, and Controller fold-
ers). As you’d expect, the purpose of each of
these folders is to provide logical separation of
the three MVC concerns, as well as to tap into a
nice feature of Visual Studio that will automati-
cally namespace any class created within a
folder with that folder’s name.

 The Controllers folder is probably the least
interesting. The folder should contain only
classes which are to be used as controllers, or
base classes and interfaces that controllers
might inherit from. The Views folder is special
because it will contain code that will probably
be the most familiar to Web Forms developers.
The Views folder contains the aspx (views),
ascx (partial views), and master pages used to
present the data. Typically you’ll have a folder
inside the Views folder for each controller
which will contain views intended to be used specifically by that controller, as well as a
Shared folder to contain shared views.

The Happy Path
ASP.NET MVC developers (and developers using other convention-centric frame-
works) will often mention the Happy Path. This refers to the notion that following the
MVC framework’s conventions will make the developer’s experience both enjoyable
and relatively painless. The MVC framework does not require you to adhere to any
particular convention, but the farther you stray from the Happy Path the greater the
effort will be required by the developer. The MvcContrib project enhances the path,
and you’ll certainly find ways to enhance it in your system. Staying on the path gains
you a great deal in consistency.

7Picking apart the default application

For most nontrivial projects, you probably won’t place your models in the Models
folder. Generally speaking it’s a best practice to keep your domain model in a separate
project so that other applications can use it without taking a dependency on your MVC
application. We recommend that you put only presentation concerns in the Web
Application project.

 In the default project, you may be familiar with the Default.aspx file that is pro-
vided for you, and we’ll discuss shortly why it is there. First, we must understand the
concept of a route.

1.1.2 Your first routes

Routes will be discussed in great detail in chapter 5; however, you should be aware of
some route basics to move through this section. Although Web Forms mandated a
strict convention for URLs, the MVC framework provides a mechanism to allow devel-
opers to handcraft URLs, and have them map automatically to an object in the system
that can handle the incoming web request. Routing was added to ASP.NET in the .NET
Framework 3.5 Service Pack 1 release, and is available to all ASP.NET applications. The
Global.asax.cs file contains basic routes that are provided with the MVC Web Appli-
cation project to help you get started. Before continuing, we should define a route.

 A route is the complete definition for how to dispatch a web request to a control-
ler, usually using the System.Web.Mvc.MvcRouteHandler. In the past we have had little
control over message dispatching without resorting to external tools like ISAPI filters
or carefully crafted HttpModules for URL rewriting. With Web Forms, the URL of the
web request was tightly coupled to the location of the page handling the request. If
the page was named Foo.aspx in a folder named Samples, the URL was sure to be
something like http://MvcContrib.org/Samples/Foo.aspx. Many teams have
resorted to URL rewriting to wrangle some control over the URLs and how they are
produced. With the ASP.NET MVC Framework, and ASP.NET 3.5 SP1 in general, routes
are first-class citizens that can be managed directly in the web application. We start
with defining how we want our URLs structured. The project template gives us a few
routes to start, as shown in listing 1.1.

using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

namespace Ch1GettingStarted
{
 public class MvcApplication : HttpApplication
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",

Listing 1.1 Default routes for a new project

Route name

 "{controller}/{action}/{id}", URL with parameters

http://CodeCampServer.org
http://CodeCampServer.org
http://CodeCampServer.org

8 CHAPTER 1 Getting started with the ASP.NET MVC Framework

 new {controller = "Home", action = "Index", id = ""}
);
 }

 protected void Application_Start ()
 {
 RegisterRoutes(RouteTable.Routes);
 }
 }
}

Routes must be defined before any request can be received by the application, so the
project template adds the routes to the Application_Start method in the Global.
asax.cs file. Later in the book, you’ll see that we do not leave the routes in this location
except for the most trivial of web applications.

NOTE We’ll follow long-standing best practices of separation of concerns (SoC) and
the single responsibility principle, or SRP, by moving the routes to a dedi-
cated location separated by an interface. We’ll go further into these
principles later, but, in short, the responsibility (or concern) of the
Application_Start method is to kick off operations that must happen at
the beginning of the application’s life. The responsible approach is to
avoid performing every bit of work that must happen on start. Any opera-
tions that must happen when the application starts should reside in sepa-
rate classes and merely be called in the appropriate order in the
Application_Start method.

Note that the URL portion of the route is simply a matching mecha-
nism for the request. If the URL matches a particular route, then we spec-
ify what controller should handle the request and what action method
should execute. You can create as many routes as you like, but one route
is provided for you. This route has the template, {controller}/
{action}/{id}.

The route with the template {controller}/{action}/{id} is a generic
one and can be used for many, many different web requests. Tokens are
denoted by the inclusion of {braces}, and the word enclosed in braces
matches a value the MVC framework understands. The most common val-
ues that we’ll be interested in are controller and action. The
controller route value is a special value that the System.Web.Mvc.
MvcHandler class uses to call into the IControllerFactory interface.
This is also the route we’ll be using for the rest of the chapter, so we’ll be
content with a URL in the form of http://MvcContrib.org/controller-
name/actionname. The basic route handler is an instance of IRoute-
Handler named MvcRouteHandler. We have complete control and could
provide our own implementation of IRouteHandler if we wished, but
we’ll save that for a later chapter.

Before we spin up our first controller, let’s examine what is different about the

Parameter defaults
web.config file in an MVC Web Application project. The differences are easy to spot.

9Picking apart the default application

Just look for “routing” or “MVC.” One difference we see is that a new IHttpModule is
registered in the config file. We see the UrlRoutingModule in listing 1.2.

<add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,
System.Web.Routing, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35" />

The UrlRoutingModule evaluates a request and checks if it matches a route that is
stored in the RouteTable. If the route matches, it overrides the default handler
(IHttpHandler) for the request so that the MVC framework handles the request.
We’re going to examine our first controller as a means to handle a route for the
URL /home. In the next section you’ll see how all the pieces of the starter project
fit together.

1.1.3 Running with the starter project

We’re going to move through the
starter project quickly looking at each
piece of provided code. Each serves as
an example of how to fit code together
when writing an application with the
presentation layer powered by the
ASP.NET MVC Framework. Before look-
ing at code, run the web application by
pressing CTRL + F5, and you should see
a screen that resembles figure 1.4.

 The starter project includes some
navigation, a Log On, and content.
The CSS provides simple formatting
on top of XHTML. Notice the URL in the address bar is /. "/home" also will bring up
the same page since our route specifies “home” as the default controller. This URL
does not have an extension, so if you’re planning on running your application on IIS
6, you must either add a wildcard mapping or install an ISAPI filter that provides this
functionality. Deployment to IIS 6 will be covered in more detail in chapter 10.

 Since you’re familiar with the ASP.NET request pipeline, we’ll briefly move through
how this request makes its way to an ASP.NET MVC controller. The following outlines
how the request moves through ASP.NET, to the controller, and through the view:

1 Request comes in to /Home.
2 IIS determines the request should be handled by ASP.NET.
3 ASP.NET gives all HttpModules a chance to modify the request.
4 The UrlRoutingModule determines that the URL matches a route configured in

the application.

Listing 1.2 Unique addition to the web.config file

Figure 1.4 The starter project comes with a basic
layout and CSS.

10 CHAPTER 1 Getting started with the ASP.NET MVC Framework

5 The UrlRoutingModule gets the appropriate IHttpHandler from the IRoute-
Handler that is used in the matching route (most often, MvcRouteHandler) as
the handler for the request.

6 The MvcRouteHandler constructs and returns MvcHandler.
7 The MvcHandler, which implements IHttpHandler, executes ProcessRequest.
8 The MvcHandler uses IControllerFactory to obtain an instance of ICon-

troller using the "controller" to route data from the route {controller}/
{action}/{id}.

9 The HomeController is found, and its Execute method is invoked.
10 The HomeController invokes the Index action.
11 The Index action adds objects to the ViewData dictionary.
12 The HomeController invokes the ActionResult returned from the action,

which renders a view.
13 The Index view in the Views folder displays the objects in ViewData.
14 The view, derived from System.Web.Mvc.ViewPage, executes its Process-

Request method.
15 ASP.NET renders the response to the browser.

These steps represent the simplified life of a request handled by the ASP.NET MVC
Framework. If you’re curious about the details, you can browse the source code at
http://www.codeplex.com/aspnet. The 15 steps are sufficient for understanding how
to write code based on the ASP.NET MVC Framework, and most of the time you’ll need
to pay attention only to the controller and the view. You have already seen the route
used in the starter project. Let’s look at the HomeController, shown in listing 1.3.

using System.Web.Mvc;

namespace Ch1GettingStarted.Controllers
{
 [HandleError]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData ["Message"] = "Welcome to ASP.NET MVC!";

 return View();
 }

 public ActionResult About()
 {
 return View();
 }
 }
}

Notice how simple the controller is. There is not much generated code to wade

Listing 1.3 The HomeController

B
Default action
for controller

C

Return default
view for action

Another action
method
through, and each action method returns an object derived from ActionResult. This

http://www.codeplex.com/aspnet

11Picking apart the default application

controller derives from System.Web.Mvc.Controller B. You’ll probably find this
base class adequate, but there are others to choose from in the MvcContrib project,
and as time goes on, the community will likely make many more available. It also may
be a good practice to create your own layer supertype to use in your application.

 Inside each action method, you’ll typically put some objects into a dictionary called
ViewData C. This dictionary will be passed to the view upon rendering. The controller
can provide any objects the view requires in this ViewData dictionary; the primary
object the view will render should be assigned to the ViewData’s Model property. This
can be done automatically by passing the object into the controller’s View() method.
In the starter project, the objects are simple strings, but in your application, you’ll use
more complex objects like those in figure 1.5.

 Each default action returns the result of the
View() method, which returns a System.Web.Mvc.
ViewResult object. This ActionResult subclass
will likely be a common result given that your appli-
cations will have many screens. In some cases,
you may use the other ActionResult types as
shown in figure 1.5. Your controller action can
return any type. The Controller base class will call
ToString() on your object and return that string
in a ContentResult object. Next, let’s look at the
view shown in listing 1.4, which can be found in the
project in the following path: /Views/Home/

Index.aspx.

<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="indexTitle" ContentPlaceHolderID="TitleContent"

➥ runat="server">
 Home Page
</asp:Content>

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"

➥ runat="server">

 <h2><%= Html.Encode(ViewData ["Message"]) %></h2>
 <p>
 To learn more about ASP.NET MVC visit
 <a href="http://asp.net/mvc" title="ASP.NET MVC
 Website">http://asp.net/mvc.
 </p>
</asp:Content>

The view shown in listing 1.4 is the one rendered in the browser screenshot shown in
figure 1.4. With the MVC framework, markup files do not use a code-behind file. Since
the view uses the Web Forms templating engine, you could use it, but by default just a

Listing 1.4 A simple view

Figure 1.5 Classes that derive from
ActionResult. This screenshot is from
Red Gate’s .Net Reflector.
simple markup file is generated.

12 CHAPTER 1 Getting started with the ASP.NET MVC Framework

 This view uses a master page, as you can see in the MasterPageFile attribute in the
Page directive. The master can be specified by the controller for compatibility with
many view engines, but some view engines support the view specifying the layout,
which is the case with the Web Forms view engine, the default view engine that ships
with the MVC framework.

NOTE: A ViewResult leverages the IViewEngine interface, which is an abstrac-
tion that allows the usage of any mechanism for rendering a view. View
engines will be covered in more depth later, but some alternatives can be
found in the MvcContrib open source project.

In the body of this view, the server-side tags are pulling objects out of ViewData and
rendering them in line with HTML. The responsibility of the view is to take objects in
ViewData and render them for consumption by the user. The view does not decide
what to render, only how to render. The controller has already decided what needs to
be rendered.

 In listing 1.5, examine the code of the layout. You immediately see that it’s a plain
master page, not much different from those found in Web Forms. The difference is
that master pages in MVC projects do not need to use code-behind files.

<%@ Master Language="C#" Inherits="System.Web.Mvc.ViewMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"/>
 <title><asp:ContentPlaceHolder ID="TitleContent" runat="server" />
 </title>
 <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
 <% Html.RenderPartial("LogOnUserControl"); %>
 </div>
 <div id="menucontainer">

 <ul id="menu">
 <%= Html.ActionLink("Home", "Index", "Home")%>
 <%= Html.ActionLink("About", "About", "Home")%>

 </div>
 </div>
 <div id="main">

Listing 1.5 The starter project master page

Render
another view

Render hyperlinks
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />

13Picking apart the default application

 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

The master page here is in charge of navigation. It uses view helpers (Html.Action-
Link in this case) to render the links. View helpers are available for most common
dynamic needs and for all form elements. More view helpers are available in Mvc-
Contrib, and third-party component vendors will not be far behind in offering com-
mercial view helpers.

 Now that you have seen how the code in the starter project fits together, let’s see
how to test the controller code. View code will still need to be tested with a tool like
Selenium, Watir, or WatiN, but controller code can easily be test-driven since it’s
decoupled from the view and the ASP.NET runtime. When you start a new MVC proj-
ect, a dialog will ask you which unit testing framework you’d like to use.

 If you’re using Visual Studio 2008 Professional then Visual Studio Unit Test will
already be in the list and selected. Most common unit testing frameworks have
templates that show up in the list when they are installed. For now we’ll look at using
MSTest (Visual Studio Unit Test), but we recommend using NUnit. If you’re just start-
ing out in automated testing, any mainstream framework will do. Listing 1.6 shows an
MSTest test method included in the default test project template.

using System.Web.Mvc;
using Ch1GettingStarted.Controllers;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Ch1GettingStarted.Tests.Controllers
{
 [TestClass]
 public class HomeControllerTest
 {
 [TestMethod]
 public void Index()
 {
 HomeController controller = new HomeController();

 ViewResult result = controller.Index() as ViewResult;

 ViewDataDictionary viewData = result.ViewData;
 Assert.AreEqual("Welcome to ASP.NET MVC!",viewData["Message"]);
 }
 }
}

Believe it or not, we have walked through the complete ASP.NET starter project, and you
now know the basics of the new framework. Obviously, we’ll be moving into more com-
plex topics throughout this book, and if any topic along the way does not sink in com-

Listing 1.6 The unit test for the Index action
pletely, please crack open Visual Studio and poke around while reading. Working with

14 CHAPTER 1 Getting started with the ASP.NET MVC Framework

the code directly, along with reading this text, will give you a solid understanding of this
technology. In fact, now is a great time to download the code samples for this book and
open your IDE default application.

1.2 Your first ASP.NET MVC controller from scratch
Look at listing 1.7 to understand how a web request is processed by the controller.
Note the only requirement is to implement the IController interface.

using System;
using System.Web.Mvc;
using System.Web.Routing;

namespace MvcApplication.Controllers
{
 public class HelloWorld1Controller : IController
 {
 public void Execute(RequestContext requestContext)
 {
 requestContext.HttpContext.Response.Write(
 "<h1>Hello World1</h1>");
 }
 }
}

As with everything in the ASP.NET MVC Framework, there is very little the developer
must do to create custom functionality. In the case of the controller, the only—I will
say it again—the only requirement is that the class implement the IController inter-
face B. This interface only requires that you implement a single method: Execute.
How you handle the request is entirely up to you. In the controller in listing 1.7, we’re
intentionally violating all principles of sensible programming as well as the Law of
Demeter in order to get the message “Hello World” written out to the screen as quickly
as possible. In this case, I’ve chosen not to make any use of a view. Rather, I’m formu-
lating incomplete HTML markup and directing it to the response stream. We’ll run
the sample and note the output in figure 1.6. In the code solution that comes with the
book, you can find HelloWorld1ControllerTester that illustrates how you’d unit test
a simple controller like this.

Listing 1.7 Our first controller

B

Figure 1.6 Our web application
running in the browser. Note the
simple URL and the absence

of .aspx.

15Your first ASP.NET MVC controller from scratch

Listing 1.7 shows the absolute and complete power you have when creating a controller
class. It’s very important to have complete control; however, most of the time, we’re
working in a handful of scenarios that repeat over and over. For these scenarios, the
product provides a base class that gives extra functionality. The base class for these com-
mon controllers is System.Web.Mvc.Controller. It implements the Execute method
for us and uses the route values to call different action methods depending on the URL
and the route defaults.

NOTE System.Web.Mvc.Controller is only one option to choose as a base class
for your controllers. As mentioned earlier, it’s often appropriate to cre-
ate your own layer supertype for all of your controllers. This type can
inherit from System.Web.Mvc.Controller, implement IController, or
derive from any other controller base class.

Our first use of the Controller base class will need only one action method, and we’ll
go with the convention for the default action and call it Index. Observe in listing 1.8
what our controller looks like while we leverage the Controller base class. This base
class implements the IController interface for us and provides the capability of
invoking action methods based on the current Route.

using System.Web.Mvc;

namespace MvcApplication.Controllers
{
 public class HelloWorld2Controller : Controller
 {
 public string Index()
 {
 return "<h1>Hello World2</h1>";
 }
 }
}

The public Index action method is all that is necessary for this controller to be web-call-
able. Simple content action methods need not return ActionResult. Returning any
other type will result in that object being rendered as content to the response stream.

 If we point our browser to /HelloWorld2, we’ll see that our controller sends the
same response to the browser as shown in figure 1.7:

Listing 1.8 Using the Controller base class

Inherit from
Controller

Figure 1.7 The web page has
the same output as before. The
end result is the same even
though the controller implemen-
tation has evolved.

16 CHAPTER 1 Getting started with the ASP.NET MVC Framework

Now that we know how to craft a controller, we’ll explore our first view.

1.3 Our first view
Recall that the ASP.NET MVC Framework uses a convention for locating views. The
convention is to find a .aspx file in a directory tree that matches /Views/controller-
name/actionname.aspx. In our next example, we’ll modify our controller by calling a
method on the Controller base class called View(). We’ll set the model, which is a
string with the text “Hello World”, to an entry in the ViewDataDictionary object on
the ViewData property of the Controller base class. This ViewDataDictionary
instance will be forwarded to the view. Although ViewData is a ViewDataDictionary
we recommend you depend only on the IDictionary<string, object> interface if
you’re replacing the view engine. View engines will be discussed in more detail in
chapter 4. In listing 1.9, we see that our action returns ActionResult instead of
string. After an action method returns, the ActionResult executes to perform the
appropriate behavior, which is rendering a view in this case. Examine listing 1.9 for
the current implementation of our controller. ViewData contains the object that will
be forwarded on to the view. The View() method also supports passing a single object
to the view that is then accessible via ViewData.Model, which we’ll explore later.

using System.Web.Mvc;

namespace MvcApplication.Controllers
{
 public class HelloWorld3Controller : Controller
 {
 public ActionResult Index()
 {
 ViewData.Add("text", "Hello World3");
 return View();
 }
 }
}

If you’re following along with this example, you’ll
want to create a HelloWorld3 folder inside
/Views in your project as shown in figure 1.8.

 Next, add a view to the project inside /Views/
Helloworld3. You can use the New Item dialog
for the project and select the MVC View Page; a
quicker way is to use the context menu (right
click) off of the action and select Add View… as
shown in figure 1.9. This tool will create a view
with the proper name inside the proper folder.
Your project should now look similar to fig-
ure 1.8. Our new view, Index.aspx, resides in the
HelloWorld3 folder.

Listing 1.9 Using a view to render the model

Add objects
to ViewData

Figure 1.8 The proper location of
the HelloWorld3 folder is inside
the /Views folder. The default view
factory uses this convention. You can
override this behavior if you wish.

17Our first view

Our markup within the view will be very simple. After all, this application is so trivial that
all it has to do is output “Hello World3” to the screen in big text. We’ll use the <% server-
side operators to pull out our model (which is a string) from the ViewData dictionary
and render it to the screen. Listing 1.10 has our markup for the view. The base class is
System.Web.Mvc.ViewPage. This is a very important difference from Web Forms.

<%@ Page Language="C#" Inherits="System.Web.Mvc.ViewPage" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title></title>
</head>
<body>
 <div>
 <h1><%=ViewData ["text"]%></h1>
 </div>
</body>
</html>

The flow from our controller to our view is simple. The controller designates one or
many objects to be forwarded to the view, then optionally specifies the name of the
view. The MVC framework will locate the view, instantiate it, push in the ViewData, and
have the view render itself to the response stream. The ViewPage base class fully sup-
ports rendering, but ViewState, postbacks, and the server-side postback events no lon-
ger happen. Rendering events still fire since ViewPage derives from System.
Web.UI.Page.

 The view’s only responsibility is to transform objects passed to it into HTML. This is
a key part of the SoC, a key best practice that Microsoft is focusing on with this product.
The controller does not know how the view is doing the formatting. The only point of
coupling is that the controller names the view, either implicitly with the name of the
action, or explicitly with the View() method. It does not matter that the System.
Web.Mvc.WebFormViewEngine is executing. The same controller could function quite
well with an NVelocity view (supported in MvcContrib) since the controller’s only cou-
pling to the view is the view name. For now, we’ll forward “Hello World3” to the view,
and figure 1.10 shows the rendered page. This example has shown how to get a simple
case working, but there are maintenance concerns you should be aware of while build-

Listing 1.10 Accessing ViewData from within the view

Figure 1.9 Adding the view to
our project via the context menu
ing an application with this framework.

18 CHAPTER 1 Getting started with the ASP.NET MVC Framework

1.4 Ensuring the application is maintainable
You might have cringed when you saw that the domain model object was being
pushed into an IDictionary with a string key as the way to identify the object in the
view. .NET has conditioned us to want everything to be strongly typed, so string identi-
fiers are sometimes viewed as a negative. That point is subjective and controversial,
and you have several options depending on your preferences.

NOTE Using a dictionary to pass objects between different parts of an applica-
tion (typically called a property bag) allows the various parts of the applica-
tion to be loosely coupled. The downside is that objects coming out of
the property bag may need to be cast before being used.

The use of an IDictionary<string, object> for ViewData is the default mechanism
in the Controller base class. As the number of objects forwarded to the view increase,
it’s easy to create helpers in the view to avoid casting operations everywhere. However,
many controller actions will forward only one object to the view, and for those cases,
we can make use of the ViewData.Model property as well as strongly typed views. For
our next example, we’ll make a small change to our controller and view to enable a
strongly typed reference.

 Listing 1.11 shows our controller discarding the use of the IDictionary<string,
object> and passing the domain model object directly to the View() method. This
works well for many scenarios and it scales to large applications with the use of a view
model, which is a presentation object specifically crafted for use in a single view. For
composed views using ViewData as a dictionary may be necessary, but partial views,
covered in chapter 4, can also provide for composed views.

NOTE In listing 1.11 we have to cast our string “Hello World4” to an object
when we pass it to the View() method. This is because one of the over-
loads of View() takes a single string as a parameter, which is used to spec-
ify a particular view to be rendered.

using System.Web.Mvc;

Listing 1.11 Passing in the presentation model to the View method

Figure 1.10 The output is the
same as previous examples,
except now we have a full HTML
page and not an HTML fragment.
namespace MvcApplication.Controllers

19Ensuring the application is maintainable

{
 public class HelloWorld4Controller : Controller
 {
 public ActionResult Index()
 {
 return View((object)"Hello World4");
 }
 }
}

Notice that we have a Model property (a shortcut to ViewData.Model) available that is
the type declared as the generic parameter for ViewPage<T> in the Inherits tag. In
listing 1.12 we have chosen System.Web.Mvc.ViewPage<string>. The generic base
class allows us to strongly type the ViewData.Model property because the ViewData
property is of type ViewDataDictionary<T>, and the Model property is of type T.

<%@ Page Language=”C#” Inherits="System.Web.Mvc.ViewPage<string>"
MasterPageFile="~/Views/Shared/HelloWorld.Master"%>
<%@ Import Namespace="MvcApplication.Controllers"%>

<asp:Content ID="Content2" ContentPlaceHolderID="Main" runat="server">

 <h1><%=Model%>! I'm strongly typed in a layout!</h1>

</asp:Content>

In this example, the view has chosen the master page, but as we’ve said before, you
can also choose the master inside the controller action. It’s up to you, but not all view
engines support the view specifying the master, so if there is a chance you may want
to change view engines later, you may want to consider specifying the master in
the controller. The downside to this is that you increase the tightness of coupling to
the views.

 Master pages function the same as in Web Forms for templating, but the server-
side postback and ViewState mechanisms are irrelevant. Rendering is the only
responsibility of the view and the master page. Listing 1.13 shows our master page,
which outlines the structure for the page. The layout declares System.Web.Mvc.View-
MasterPage as the base type.

<%@ Master Language="C#" AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Hello!!</title>
 <asp:ContentPlaceHolder ID="head" runat="server">
 </asp:ContentPlaceHolder>

Listing 1.12 Strongly typed view with master page

Listing 1.13 The layout for our view

Cast so correct
overload called
</head>

20 CHAPTER 1 Getting started with the ASP.NET MVC Framework

<body>
 <div style="border: solid 4px red">
 <asp:ContentPlaceHolder ID="Main" runat="server">

 </asp:ContentPlaceHolder>
 </div>
</body>
</html>

If we run the project (CTRL + F5) and point our browser to /HelloWorld4, we see our
strongly typed view and master page in action. To make it stand out, we have given it a
strong border as shown in figure 1.11. Most views that we’ll work with in this book will
use the ViewPage<T> base class to enable a strongly typed Model property and the easy
usage of view models, which will be covered in chapter 2.

Congratulations! You have created your first controller, and it handles its responsibility
perfectly. From this point forward, we won’t cover every small step of developing with
the MVC framework. If you’re reading this book, you should already be well versed in
ASP.NET, so we’ll be covering only the items that are new with the ASP.NET MVC Frame-
work. We’ll be using best practices and advanced software development techniques
throughout the examples. The first important practice we’ll cover is unit testing.
Because the MVC framework allows us to keep our controllers separate from the views,
we can now easily test the controlling logic. We consider testing an important part of get-
ting started with the MVC framework, so we’ll touch on it now and keep a strong empha-
sis on testing throughout this book. Although we won’t print every unit test in the book,
you can find more unit tests in the examples for this book, which can be downloaded
from the publisher’s website (www.manning.com/ASP.NETMVCinAction).

1.5 Testing controller classes
For this section you’ll need the unit testing framework NUnit installed. It can be
found at http://www.nunit.org, and is free. After installing the latest version, you
should open the NUnit GUI and select: Tools > Options > Visual Studio (on the left)
and check the box that says Visual Studio Integration. This will make it easier to work
with NUnit from within Visual Studio.

 Now return to the unit test project we created earlier. You’ll need to remove the
references to MSTest, and add a reference to NUnit. We have created a class named
HelloWorld4ControllerTester to house the unit tests that verify the controller

Figure 1.11 This is
our final view, complete
with layout, strong
typing, and a little CSS
to spice it up.

http://www.nunit.org
http://www.manning.com/ASP.NETMVCinAction

21Testing controller classes

functions correctly. See in figure 1.12 that we’re grouping controller unit test fix-
tures in a Controllers folder. As you browse through the code listings, you’ll notice
that we have created stubs for several classes that the controller needs to function.
This unit test example is the simplest one we’ll see in this book. Listing 1.14 depicts
the NUnit test fixture for HelloWorld4Controller.

using System.Web.Mvc;
using MvcApplication.Controllers;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;

namespace MvcApplicationTest.Controllers
{
 [TestFixture]
 public class HelloWorld4ControllerTester
 {
 [Test]
 public void IndexShouldRenderViewWithStringViewData()
 {
 var controller = new HelloWorld4Controller();
 var viewResult = (ViewResult) controller.Index();

 Assert.That(viewResult.ViewName, Is.EqualTo(""));
 Assert.That(viewResult.ViewData.Model, Is.EqualTo("Hello World4"));
 }
 }
}

Let’s examine our simple unit test inside Hello-
World4ControllerTester. Our test is Index-
ShouldRenderViewWithStringViewData. We
create an instance of the class under test,
HelloWorld4Controller B. We then call our
Index method C capturing the ActionResult
returned. Our test expects it to be a ViewResult
instance, so we cast it as such. If the code returns
the wrong type, our test will fail appropriately.
At the end of the test, we easily assert our expec-
tations D. Unit tests normally follow an arrange,
act, assert flow, and this test is a perfect example
of that. This was a very simple unit test, and
chapter 3 will cover unit testing controllers in
more depth. Figure 1.13 shows the test being
run with UnitRun from JetBrains. UnitRun is
also a feature of ReSharper.

 Creating automated unit tests for all code and running these tests with every build

Listing 1.14 Unit test fixture with NUnit

B
C

D

Figure 1.12 In your unit test project, after
adding a reference to nunit.framework.dll,
you’re ready to add a test fixture.
of the software will help ensure that as the application scales with complexity, the

22 CHAPTER 1 Getting started with the ASP.NET MVC Framework

software continues to be maintainable. Typically, as an application grows, it becomes
more difficult to manage. An automated test suite helps counter that natural ten-
dency for entropy. Fortunately, it’s easy to test controllers with the MVC framework.
In fact, the team at Microsoft used test-driven development (TDD) while developing
the framework.

NOTE Along with the MVC framework, Microsoft has wrapped some of the
ASP.NET code and provided abstract classes to some of the key APIs such
as HttpResponseBase, HttpRequestBase, and most importantly, Http-
ContextBase. A Google search will reveal how many people have had
trouble testing against HttpContext because of its sealed and static mem-
bers. Providing abstract classes for these key APIs loosens the coupling to
them, increasing testability.

We have mentioned unit testing several times in the text, and it’s important to under-
stand the connection to TDD. Test-driven development is a development style where
unit tests (and other tests) are created before code that make the tests pass is written.
In this chapter we have not adhered strictly to the TDD process, in an attempt to focus
on key areas of the MVC framework without adding the mental overhead of a new
development process.

 It’s a good practice to ensure that as you’re writing your unit tests, they do not call
out to any database or web service. This helps keep the testing portion of your build run-
ning fast, and ensures maintainability by not adding a dependency to an external system
that is not guaranteed to not change. It’s reasonable to run a build containing 2000 auto-
mated tests in 5 seconds; if many of your unit tests involve a database, your build will
likely take much longer. Other tests that integrate with external things like a database
are still valuable, but they can take several seconds each in some cases, so you want to
concentrate on keeping controller tests at the unit level. To help with this, you can stub
out (or “mock”) controller dependencies.

1.6 Summary
We have now seen how easy it is to get started with the ASP.NET MVC Framework, and
for the rest of this book, the examples will not be so trivial. You now know how to add

Figure 1.13 When we run this unit test
using JetBrains ReSharper, it passes as
we expect.
a route to the application and that the route defines what controller and action

23Summary

should be invoked for a given URL. Once the controller is invoked, an action method
is in charge of determining what should be passed to the view for the given request.
The view takes the objects passed and formats the objects using a view template. The
view does not make any decisions about the objects passed but merely formats them
for display. This separation of concerns contributes to a more maintainable applica-
tion than what we have seen with Web Forms.

 For most of this book, we’ll be using CodeCampServer in our examples. Along
with being included in the downloads for this book, CodeCampServer can be found at
http://CodeCampServer.org. It’s an ASP.NET MVC Framework application that can
host a conference for a user group. It uses a decoupled Onion Architecture, domain-
driven design, the ASP.NET MVC Framework, and NHibernate to show how a real
enterprise application would look. It has a complete build process with NAnt, which is
monitored by a build server such as CruiseControl.Net or JetBrains TeamCity. The
entire application is meant as a living example of how to write a real application with
the ASP.NET MVC Framework. Since its inception, more volunteers have joined the
project, and now it’s a full community effort. It will live on well past the life of this
book, so the copy of the code you receive with this book is a snapshot in time. We
invite you to join the project as it continues to progress.

 We’ll use this real-world application in our examples going forward. What this
means is that you’ll need to be up to speed with the concepts and patterns discussed.
As an author team, we have decided that we could provide more value with advanced,
real-world examples that might cause the reader to have to do a bit of research than
we could by over-simplifying the examples. We’re choosing not to compromise on
software design, even if it makes the book a bit more difficult to write. The first topic
we cover in depth is the Model portion of Model-View-Controller in the next chapter.

http://CodeCampServer.org

The model in depth
Without a model, software is not interesting. A model in the English language is just
like a model in software: a representation of the real thing. In software, we represent
the real world by using objects that are named after concepts we deal with every day.
These objects have attributes and behaviors similar to those found in the real world.
In this chapter, we’ll explore a model for a system that helps to manage a small con-
ference, like a Code Camp. The model enables the application to provide an interest-
ing service. Without the model, the application provides no value. We place great
importance on creating a rich model with which our controllers can work.

 The style of modeling we’ll use in this book is domain-driven design (DDD), as con-
veyed by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart
of Software. Covering the topic in depth is a book in itself; we’ll tackle a small primer,
which should enable you to follow the software examples in the rest of this book. After
the DDD primer, we’ll discuss how to best use the domain model; then we’ll move

This chapter covers
■ Guidance for designing the model
■ Exploring a real-world domain model
■ Using a presentation
■ Tips for working with model objects
24

25Understanding the basics of domain-driven design

through how to use a presentation model to keep controllers and views simple. We’ll
keep a keen eye on SoC, and we’ll ensure that every class has a single, well-defined
responsibility. Before digging deep, we need a good understanding of the basics of DDD.

2.1 Understanding the basics of domain-driven design
Developers can use different methods to model software. The method we prefer is
domain-driven design, which looks at the business domain targeted by the software
and models objects to represent the appropriate concepts. We refer to the domain
model as the object graph that represents the business domain of the software. If the
software lives in the online e-commerce space, we would expect to find objects such as
Order, Customer, Product, etc. These are not just data-transfer objects either. They are
rich objects with properties and methods that mimic behavior in that business space.
Popular in .NET development, the DataSet object would not be appropriate in a
domain model because the DataSet is a relational representation of database tables.
Whereas the DataSet is a model focused on the data relationships and persistence, a
domain model is focused more on behavior and responsibility.

 In our fictitious e-commerce application, when retrieving order history for a cus-
tomer, we would want to retrieve an array or collection of Order objects, not a DataSet
of order data. The heavy focus on the demarcation of behavior and the encapsulated
view of data is key in DDD. If you are unfamiliar with domain-driven design, you may want
to review some of the following references. Reviewing these publications is not necessary
for the purpose of this book, but they will help you as you develop software in your
career. From this point forward we’ll defer to these resources for more detail on domain
models, aggregates, aggregate roots, repositories, entities, and value objects. When dis-
cussing each of these concepts, we’ll talk only briefly about their purpose and then move
on. The next section is an overview of the core domain model for this book.

References for learning more
Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans—The
most complete reference for DDD. Evans can be credited for making this collection
of patterns known. He applies his own experience as he names patterns that work
together to simplify complex software. Addison-Wesley Professional (2003).

Domain Driven Design Quickly by Abel Avram Floyd Marinescu—A 104-page book de-
signed to be a more concise guide to DDD than Evans’ book. This e-book is summa-
rized mainly from Evans’ book. Lulu Press, Inc. (2007).

Applying Domain-Driven Design and Patterns: With Examples in C# and .NET by Jimmy
Nilsson—The author takes the reader through real, complete examples and applies
DDD patterns along with test-driven development (TDD) and O/R mapping. Addison-
Wesley Professional (2006).

http://domaindrivendesign.org/—An evolving, information website maintained by
Eric Evans, Jimmy Nilsson, and Ying Hu.

http://domaindrivendesign.org/

26 CHAPTER 2 The model in depth

2.2 Domain model for this book
Throughout the rest of this book, our examples will be centered on the open source
project, CodeCampServer. Authors of this book started the project, and it is being
extended at the time of publishing by a strong network of contributors. This software
can serve as the official website for a software conference, often called a Code Camp.
The domain model is centered on the concepts present when managing a Code
Camp. Since Code Camp is a common name (also common is TechFest or BarCamp), our
central object is Conference. In figure 2.1, you see the complete domain model for
the application, and we’ll work with different pieces in the examples following in the
chapter and the rest of the book.

2.2.1 Key entities and value objects

Figure 2.1 shows some of the entities and value objects in play within our domain
model. The entities are the key objects in our domain model, such as Conference,
Session, Track, and TimeSlot. With so many types in the diagram, you probably won-
der what is special about these classes and what makes them entities. The reason these
are entities is that they have the concept of an identity, a property which can be exam-
ined to determine uniqueness. The reason we give these objects an identifier is that

Conference

KeyedObject
Class

Fields

Properties

Address
City
Description
EndDate
HasRegistration
HtmlContent
LocationName
Name
PhoneNumber
PostalCode
Region
StartDate

Methods

Attendee

PersistentObject
Class

Properties

EmailAddress
FirstName
LastName
Status
Webpage

Session

KeyedObject
Class

Properties

Abstract
Level
MaterialsUrl
RoomNumber
Title

Speaker

KeyedObject
Class

Properties

Bio
Company
EmailAddress
FirstName
JobTitle
LastName
WebsiteUrl

Track

PersistentObject
Class

Properties

Name

TimeSlot

PersistentObject
Class

Properties

EndTime
StartTime

User

PersistentObject
Class

Fields

Properties

EmailAddress
Name
PasswordHash
PasswordSalt
Username

Methods

UserGroup

KeyedObject
Class

Fields

Properties

City
Country
DomainName
GoogleAnalysticsCode
HomepageHTML
Name
Region

Methods

Proposal

PersistentObject
Class

Properties

Abstract
CreatedDate
Level
Status
SubmissionDate
Title
Votes

Methods

IConferenceRepository

IKeyedRepository<Conference>
Interface

Methods

_attendees

Track

Speaker

Conference

Conference

TimeSlot

UserGroup

Conference
Conference

Conference

Submitter

GetAllForUserGroup
GetFutureForUserGroup
GetNextConference

Figure 2.1 Partial domain model for CodeCampServer, which will serve as the basis of future examples
in this book.

27Domain model for this book

these can stand on their own, and we can speak about these objects without other sup-
porting concepts. It would make sense to list a collection of any of these objects. Enti-
ties can stand on their own, and we can reason about them in a collection or as a
single object.

 Value objects don’t make sense on their own without the supporting context of an
entity to which they belong. Two value objects in our domain model are Session
Level and Conference Address. Also many properties of entities are value objects.
Let’s discuss Level and what context is required for it to make any sense.

 A Level has a value that indicates the difficulty level of the session. It does not have
an identifier. Level belongs completely to the Session class. Without Session, Level
would have no context and would have no meaning. The purpose of Level is to
denote the information that helps attendees of the conference choose what sessions
may be appropriate. Being a value object, Level is defined by its properties and meth-
ods and has no identifier. It would not make sense to list out a collection or array of
Level instances because without the Session, it has no meaning or purpose. Its rela-
tionship with other entities gives it meaning. The Session it belongs to and the diffi-
culty level information it includes give it the context to convey meaning in the
application, and when some other code needs the session’s Level, it must ask the Ses-
sion instance for the Level. The Session object will hand back this object. Like
Level, other types without identifiers are value objects. Value objects are not glamor-
ous and even describing them can be boring. The arrangement of entities and value
objects into larger structures can be interesting.

 Entities and value objects are useful in separating responsibilities in a domain
model, but there is more. If we need to load a Conference entity for the Austin .NET
User Group Code Camp, what does that mean? We see that our Conference object
can have many Sessions, and that each Session has a Speaker. Going further, a
Speaker has a WebsiteUrl property. Tracks, Sessions, and Attendees all have a rela-
tionship with a Conference. When we need to deal with a Conference object, must we
have all associated objects in memory for any operation to make sense? The answer is
no. In DDD, we divide our domain model into aggregates.

2.2.2 Aggregates

Aggregates are groups of objects that work and live together. We group them along
natural operational lines, and one entity serves as the aggregate root. The aggregate
root serves as the entry point and the hub of operations for all objects in the aggre-
gate. An aggregate can have many objects, or it can just be a single entity, but the
aggregate root is always an entity since it must be able to stand on its own, and only
entities can stand on their own. In figure 2.2, we see some of the aggregates for Code-
CampServer, with the Conference aggregate in the center.

 The aggregate root is the Conference class, and another member of the Confer-
ence aggregate is Attendee. This is not the complete Conference aggregate, but it
demonstrates some conventions of the aggregate pattern. It may seem trivial that we

classify this object in the Conference aggregate, but specifying ownership is valuable.

28 CHAPTER 2 The model in depth

We have specified that the Conference type owns the types in the Conference aggre-
gate. Objects in other aggregates are not allowed to have a durable relationship with
the nonroot objects in the Conference aggregate.

NOTE Session holds a reference to Track, which is another aggregate root.
Types in an aggregate are allowed to hold references to other aggregate
roots only, not to other nonroot types in a different aggregate. For
instance, even if only five Attendees could attend a session, Session
would not be allowed to have a reference to the several Attendee
instances because Attendee is a nonroot type in the Conference aggre-
gate. In short, if a type belongs to an aggregate, types in other aggregates
must not hold a durable reference.

The separation into aggregates enables the application to work with domain objects
easily. If we did not draw aggregate boundaries, the entire domain model could easily
devolve into a ball of spaghetti references. Conceivably, we wouldn’t be able to use any
objects without the entire object graph loaded into memory. Aggregate boundaries
help us to define how much of the domain model is necessary for an interesting oper-
ation. For instance, if we want to show conference information on a screen with the

Conference

KeyedObject

Class

Fields

Properties

Address
City
Description
EndDate
HasRegistration
HtmlContent
LocationName
Name
PhoneNumber
PostalCode
Region
StartDate
UserGroup

Methods

Attendee

PersistentObject

Class

Properties

EmailAddress
FirstName
LastName
Status
Webpage

Session

KeyedObject

Class

Properties

Abstract
Level
MaterialsUrl
RoomNumber
Speaker
TimeSlot
Title

Track

PersistentObject

Class

Properties

Name

_attendees

Track

Conference

Conference

Figure 2.2 The Conference aggregate

29Domain model for this book

location, directions, sessions, and speakers, we don’t need to load the entire object
graph. We only need the Conference aggregate and the other aggregate roots that are
necessary. In fact, if we need only the start and end dates for the conference, we would
not even have to load the entire Conference aggregate. Now that we are discussing
how much of the object graph to load, you might wonder why we haven’t yet discussed
persistence to a database.

2.2.3 Persistence for the domain model

For this book, persistence is just not that interesting. Sure, we can imagine how we
might load and save these objects from and to a relational database, xml files, web ser-
vices, and so on, but when designing a domain model, persistence concerns are
mostly orthogonal to the model. For most business applications, we’ll have to durably
save the state of the application somehow, but the domain model should not have to
care whether that persistence is to XML files, a relational database, an object database,
or if the entire state of the application is just kept around in memory.

NOTE Persistence is interesting and necessary for real applications. We are not
discussing specific data access techniques because that topic is orthogo-
nal to the ASP.NET MVC Framework. The MVC framework is a presenta-
tion layer concern, and it can work with many data access strategies. Your
back-end data access decisions do not change if you use the ASP.NET MVC
Framework instead of Web Forms, Windows Forms, WPF, Silverlight, or
even a console UI.

Regardless of the persistence mechanism, the domain model includes a concept for
loading and saving object state. Notice how we are not talking about loading and sav-
ing data. In the domain model, we are concerned about objects, not data. We need to
load object state and persist object state. We do that using repository types. In domain-
driven design, we dedicate a repository to each aggregate, and the repository is
responsible for loading and saving object state. The repository performs the opera-
tions on the aggregate root only. In the case of the Conference aggregate, we’ll work
with a type called IConferenceRepository. In figure 2.3, we see the repository whose
responsibility it is to perform persistence operations on the Conference aggregate.

 For more examples, we have a repository for each aggregate in our domain model.
Some of them are listed here:

IConferenceRepository

IKeyedRepository<Conference>

Interface

Methods

GetAllForUserGroup
GetFutureForUserGroup
GetNextConference

IKeyedRepository<T>

IRepository<T>

Generic Interface

Methods

GetByKey

IRepository<T>
Generic Interface

Methods

Delete
GetAll
GetById
Save

Figure 2.3 IConferenceRepository—all persistence operations on the aggregate root

30 CHAPTER 2 The model in depth

■ IConferenceRepository —Persistence operations on the Conference aggregate
■ ISessionRepository —Persistence operations on the Session aggregate
■ ITimeSlotRepository —Persistence operations on the TimeSlot aggregate
■ ITrackRepository —Persistence operations on the Session Track aggregate

Let’s examine the Conference aggregate once again as it relates to persistence. Sup-
pose that when managing a Code Camp with this application we add several attend-
ees. In the application we would add Attendee instances to our Conference instance
and then pass our Conference to the Save() method of IConferenceRepository. The
repository would be responsible for saving the Attendee instances as well because
these objects live within the Conference aggregate. The repository’s responsibility is
to manage persistence for the Conference aggregate, which means every object in
the aggregate.

 You are probably wondering what mechanism we are using for persistence because
we still have not mentioned it. With this book, you can download the full source code
and examine the classes that implement our repository interfaces, but for the purpose
of exploring the ASP.NET MVC Framework, we find it irrelevant and a distraction to
explore the data access code, and we’ll keep this book’s focus on the presentation
layer, which is where the ASP.NET MVC Framework lives. The repository interfaces will
provide the objects we need to work with for all the examples in this book, and the
controller classes will depend on these repository interfaces as well as other logical
service types. Since data access and a screen controller have completely different con-
cerns, a screen controller in this book will never concern itself with how any sort of
data access is performed, or that data access is happening at all. A screen controller
will call methods on dependencies, which will often be repositories, and when calling
the Save() method on IConferenceRepository, the screen controller does not care
whether the implementation saves the object in an in-memory cache, an XML file, or a
relational database. The controller will merely call the repository and trust that what is
behind the interface will work appropriately.

NOTE No doubt you have seen some examples where controller actions directly
contain data access code. With LINQ to SQL being new and growing in
popularity, conference talks are featuring ASP.NET MVC Framework
demos where a controller action performs a LINQ to SQL query. This
works for small or short-lived applications, but it is inappropriate for
long-lived business applications because of the coupling. For years, the
industry has known that coupling presentation concerns with data access
concerns is a recipe for disaster. These concepts gave birth to the well-
known data access layer. When using the ASP.NET MVC Framework, a con-
troller is part of the presentation layer. The best practice still stands to
avoid putting data access in your presentation layer; any data access con-
cern in a controller action creates technical debt that will put a tax on
maintenance for the life of the application.

http://www.ayende.com/projects/rhino-mocks.aspx

31Presentation model

One benefit that we can capitalize on immediately when separating our data access
layer from the presentation and business layers is unit testing. While unit testing our
screen controllers, you will notice we frequently fake out the repository interfaces so
that they return a canned list of objects as the context for a test. Unit testing control-
lers should never involve any persistence mechanism or exercise external dependen-
cies. We’ll cover the unit testing of controllers in much more detail in chapter 3, but
in a unit test, the repository implementation will never come into play. A substitute
object will always be provided for the interface.

 At this point, we have enough information about our domain model to proceed,
but the domain model is not the only type of model that we need. The domain model
is important because it represents unique concepts in the real world. A conference
can have many attendees, so that is how we model it. An attendee describes a person
who is coming to the conference, and that is how we represent it in code. Now, what
about a schedule listing? When listing the time slots, sessions, and speakers, how do
we work with that in the presentation layer (in our screens)?

2.3 Presentation model
The domain model represents concepts as they truly are, but often a screen in our
application needs a transformed representation of the domain model. For displaying
a schedule of a conference, we need a flattened, or projected, model. This is the pre-
sentation model, a model that exists only for specific presentation needs. In the case
of a schedule, we’ll need to show the start time, end time, title, and speaker for every
session. We can easily ask the repositories for the objects fully populated, and then we
have all objects we need. However, if we place the responsibility on the screen control-
ler for navigating the object graph and pulling all the appropriate pieces out, we are
muddying the responsibilities of the controller. If the application is sufficiently trivial,
we may let the controller take care of this, but that would be a judgment call for you to
make. In CodeCampServer, our controllers will be quite thin. The controller is
responsible for coordinating dependencies and forwarding objects for display on to
the view. Controller code is code that is coupled to the framework being used for the
UI. We want to get away from framework code as quickly as possible. Whose responsi-
bility, then, is it to filter and arrange the conference schedule so it is in a shape suit-
able for display?

2.3.1 Presentation model responsibilities

This is where the presentation model shows its value. The presentation model is respon-
sible for transforming the domain model into a representation that is useful for the pre-
sentation layer, namely, the controller and view. Whereas the domain model is an n-
dimension object graph that accurately represents the real world, the presentation
model takes these objects and projects them into a flatter model that can easily be rep-
resented on a graphical screen.

32 CHAPTER 2 The model in depth

NOTE The presentation model can be many things. Ultimately, it is an object
model that serves a particular screen, not the entire domain. This object
model can be populated in isolation, or it can take responsibility to popu-
late itself when a domain object is passed into the constructor. The pre-
sentation model goes in the /Models folder in an ASP.NET MVC
Framework application. The presentation model is part of the presenta-
tion layer and should not be referenced by the rest of the application. Typ-
ically a complex screen will require a presentation model object graph.

Let’s revisit our conference listing example. It would not be appropriate for a control-
ler to pass a Conference object to the view and hope the view knows how to traverse
the object graphic in order to render the correct information. This is too much
responsibility for the view. The controller needs an object that it can send to the view
so that there is only one way for the view to render the object or structure of objects. If
the view has a decision to make, we have introduced the possibility for a functional
bug in the part of the code that is the most difficult to test. We want to pull all deci-
sions back into the heart of the application where they can easily be tested. For this,
we’ll have ScheduleController use a new object in the presentation model called
ScheduleForm. The controller will map a conference into a ScheduleForm instance by
leveraging IScheduleMapper. See figure 2.4 for the ScheduleForm structure.
The ScheduleForm class, along with header information, can provide us with a collec-
tion of TimeSlotAssignmentForm objects, each of which are presentation objects and
are easy to render. ScheduleForm also has a collection of TrackForm objects. These two
collections will form the two axes of the table that the view is going to render for the
schedule page. The view merely has to translate the graph of objects into a table. What
makes a presentation object easier to render on a screen than a domain object?

ScheduleForm

ValueObject<ScheduleForm>
Class

Properties

Date
Day

Methods

TimeSlotAssignmentForm

ValueObject<TimeSlotAssignmentForm>
Class

Properties

TimeSlot
Methods

TrackAssignmentForm

ValueObject<TrackAssignmentForm>
Class

Properties

Sessions
Methods

TrackForm

ValueObject<TrackForm>
Class

Properties

ConferenceId
ConferenceKey
Id
Name

Methods

Tracks

TimeSlotAssignments

TrackAssignments

Track

Figure 2.4 The presentation model contains classes specific to a particular screen. Logic that decides
how to structure the domain model for presentation on a screen can be factored into presentation model’s
classes.

33Presentation model

2.3.2 Projecting from the domain model

A presentation object is easier to render than a domain object because it discards the
natural depth of a domain model object graph and provides a flattened, or projected,
interface. In our view, we can ask the ScheduleForm for the two collections of objects
that are the headers and rows of the schedule table when rendered to the screen. The
presentation model is intentionally structured to naturally represent the presentation
of the information. The goal of the presentation model is to match the view’s desired
structure closely. Figure 2.5 shows what the full structure looks like.

 At the session level, SessionForm is not complicated. The SessionForm is responsi-
ble for representing a single cell in the schedule table on the screen. With track on
the table header and time along the first column, sessions will be rendered in the
appropriate track and time slot. The SessionForm has the properties that will be ren-
dered so that the schedule makes sense.

NOTE The presentation model is not the only type of specialized model we
could use. We have service models, storage models, security models, and
messaging models. The common factor among these is that these object
models lie at the extremities of the application and enable the applica-
tion to interact with the outside world. The presentation model helps the
presentation layer, which interacts with a human user. A messaging
model would represent state and behavior necessary for messaging infor-
mation to other systems asynchronously. It is conceivable that the UI
could even send a message to the domain in a more complex system with
large data entry screens.

The difference in these models is portability. Domain model objects are
not portable. They are contained within the bounded context where they
are useful. Presentation model objects are portable from the application
layer up to the UI. A messaging model would be portable for serialization
across MSMQ or similar transfer mechanisms. We would not send our
domain objects directly in messages because we would end up coupling
other systems to the shape and types of our domain model. Instead, the
messaging model (call it whatever you like) represents the shape neces-
sary to communicate with the external system or application layer.

The presentation model simplifies the domain model for rendering and helps make the
numerous decisions that are necessary for rendering objects. If a controller or view were
left with all these decisions, the likelihood of a defect would increase, and the amount
of code in the controller or view would grow, causing maintainability to decrease. The
presentation model is a key element of the presentation layer and should come into play
any time a screen needs to work with an object that is not just an object but a deep object
graph. For simple domain objects, or for merely displaying object header information,
a presentation model object might not be necessary, but if you find yourself digging into
an object graph in our view, pull back and consider introducing a presentation object.
The unit tests are easy and quick, and the view becomes much simpler.

34 CHAPTER 2 The model in depth

2.4 Working with the model
Congratulations! You now understand all you need to know to follow the rest of the
examples in this book. Although you could study DDD for years, understanding this

small Code Camp domain model is sufficient to master the techniques presented in
the following chapters.

 Now that we understand the model we’ll be working with, let’s put it together and
use our Code Camp domain model. We’ll start with a user story: “As a community mem-
ber, I want to navigate to http://codecampserver.org/austincodecamp2008/schedule so that I can

ScheduleForm

ValueObject<ScheduleForm>

Class

TimeSlotAssignmentForm

ValueObject<TimeSlotAssignmentForm>

Class
TrackAssignmentForm

ValueObject<TrackAssignmentForm>

Class

TrackForm

ValueObject<TrackForm>

Class

TimeSlotForm

ValueObject<TimeSlotForm>

Class

Properties
ConferenceId
ConferenceKey
EndTime
Id
StartTime

Methods

SessionForm

EditForm<SessionForm>

Class

Properties
Abstract
Conference
Id
Key
Level
MaterialsUrl
RoomNumber
Speaker
TimeSlot
Title
Track

Methods

Tracks

TimeSlotAssignments

TimeSlot

TrackAssignments

Track

Sessions

Figure 2.5 The full
presentation model
for the schedule page.
Presentation models
usually have primitive
properties.

About user stories
User stories are widely used by teams using Extreme Programming and other Agile
methodologies. A user story is a placeholder for extensive conversation that takes
place between the software customer and the software team. It is the widely accept-
ed practice for a user story to contain a persona (or the type of user) who finds the
functionality valuable. The user story describes what the persona wants to do and
why. This format helps to keep the team focused on a task that is beneficial to a cer-
tain kind of user.
see a schedule of the conference by day, time slots, and track.”

35Working with the model

2.4.1 Crafting the route

We know from the previous chapter how to create routes that will map a URL to a
particular controller and action. In this case, we are breaking away from the simple
{controller}/{action} route in favor of a URL that is obvious and intuitive. Further-
more, we are using a route API from MvcContrib inside of CodeCampServer. Chap-
ter 5 will cover ASP.NET MVC routes in depth. This section focuses on how the model
can integrate with the routes.

 The part of the URL, austincodecamp2008, is actually the unique key that will iden-
tify which conference we are dealing with. In other words, for the next Code Camp,
the URL might be http://codecampserver.org/austincodecamp2009/schedule, and so on.
Since the first token in the URL is dynamic, we have a fairly interesting route, but not
difficult to craft. The second token, schedule will denote the controller to use for this
request. Now that we have examined each piece of the URL, take note of the entire
route added to the RouteTable as shown in listing 2.1. This code is in the Route-
Configurator class.

MvcRoute.MappUrl("{conferenceKey}/{controller}/{action}")
 .WithDefaults(new {controller = "Conference", action = "index"})
 .WithConstraints(new
 {
 conferenceKey = new
 ConferenceKeyCannotBeAControllerNameConstraint(),
 controller = @"schedule|session|timeslot|track|attendee
 |conference|speaker|admin|proposal|user|sponsor"
 })
 .AddWithName("conferenceDefault", routes)
 .RouteHandler = new DomainNameRouteHandler();

This route has concerns other than ensuring the ScheduleController is invoked. The
{conferenceKey}/{controller} portion is the most interesting for now. The con-
straints ensure that only our conference-centric controllers are available after the con-
ference key. The framework will match the route with the URL and ensure the
ScheduleController is executed with the Index action by default.

2.4.2 Crafting the controller action

We are very confident that the Index method of the ScheduleController will be
invoked for this request, but we must have our controller in place so that we have a
place to add the proper code. We’ll create a ScheduleController class in Website/
Controllers/ in our solution. We’ll then inherit from the Controller base class and
create an Index action method. In CodeCampServer, all controllers have a layer
supertype (as defined by Martin Fowler in his book, Patterns of Enterprise Application
Architecture) called SmartController. SmartController derives from Controller. In
your own application, you might adopt your own controller supertype. The shell of

Listing 2.1 A route that maps the desired URL to the proper controller and action
the controller class should look similar to listing 2.2.

36 CHAPTER 2 The model in depth

namespace CodeCampServer.UI.Controllers
{
 public class ScheduleController : SmartController
 {
 public ViewResult Index(Conference conference)
 {
 return View();
 }
 }
}

This is the start of our controller class and action that will help display a conference
schedule using a view named Index. We’ll be leveraging an IModelBinder instance to
bind the conference key from route data to a Conference object. Next we need to test-
drive the logic that will map the conference into the presentation model that is appro-
priate to forward to the view.

2.4.3 Test-driving the feature

Logic in the application needs to have an automated test to verify that it works cor-
rectly. TDD is a technique that helps design loosely coupled, maintainable code while
at the same time building up a complete regression suite of automated unit tests. We
are going to test-drive the Index action method for our controller. We have added the
action method first because we decided on the name when we created the route. To
test-drive this functionality, you will need to create an NUnit test fixture in your unit
test project. In our project, we’ll call it ScheduleControllerTester.cs. Examine the
full unit test in listing 2.3.

using System.Web.Mvc;
using CodeCampServer.Core.Domain.Model;
using CodeCampServer.UI.Controllers;
using CodeCampServer.UI.Helpers.Mappers;
using CodeCampServer.UI.Models.Forms;
using NUnit.Framework;
using Rhino.Mocks;
using NBehave.Spec.NUnit;

namespace CodeCampServer.UnitTests.UI.Controllers
{
 [TestFixture]
 public class ScheduleControllerTester : TestBase
 {
 [Test]
 public void Should_map_schedule_and_display()
 {
 var conference = new Conference();
 var scheduleForms = new ScheduleForm[0];

Listing 2.2 The shell of the ScheduleController class

Listing 2.3 Unit test creates mock objects using Rhino Mocks, a .NET mocking library

37Working with the model

 var mapper = S<IScheduleMapper>();
 mapper.Stub(x => x.Map(conference)).Return(scheduleForms);

 var controller = new ScheduleController(mapper);
 ViewResult result = controller.Index(conference);
 result.ViewName.ShouldEqual("");
 result.ViewData.Model.ShouldEqual(scheduleForms);
 }
 }
}

NOTE The S method is defined as return MockRepository.Generate-
Stub<T>(argumentsForConstructor);. It resides on the base class as a
shortcut. Because these examples are part of the larger CodeCampServer
codebase, it will be valuable for you to explore the code included with
this book.

It is important to realize that we are setting up a fake object that implements
IScheduleMapper. We are passing this stub to the controller’s constructor, and our
controller will use it without knowing the difference. It is worth noting that the appli-
cation uses an IoC, or inversion of control, container to manage dependencies. This
means that we have a custom controller factory use our IoC container to create the
controller complete with whatever dependencies are declared by the constructor.
We’ll cover controller factories in greater depth later in chapter 3, but realize that
this is a best practice not just for controllers but for C# code in general. You can see
the IoC container usage by opening the full solution delivered with this book. In gen-
eral, a class should openly declare dependencies by requiring they be passed in
through the constructor.

 To complete this test, we call the Index() method with the Conference object,
then assert that the view name and ViewData.Model are correct. We cannot compile at
this point because the constructor we need does not exist. Let’s add the constructor,
run the test, and it will fail as expected in figure 2.6.

 We’ll now move back to our controller class, and write the interesting code until
our unit test passes. The resulting controller code is shown in listing 2.4.

using System.Web.Mvc;
using CodeCampServer.Core.Domain.Model;
using CodeCampServer.UI.Helpers.Filters;
using CodeCampServer.UI.Helpers.Mappers;
using CodeCampServer.UI.Models.Forms;

namespace CodeCampServer.UI.Controllers
{
 [RequiresConferenceFilter]
 public class ScheduleController : SmartController
 {
 private readonly IScheduleMapper _mapper;

Listing 2.4 The complete controller class for showing a conference schedule

B

38 CHAPTER 2 The model in depth

 public ScheduleController(IScheduleMapper mapper)
 {
 _mapper = mapper;
 }

 public ViewResult Index(Conference conference)
 {
 ScheduleForm[] scheduleForms = _mapper.Map(conference);
 return View(scheduleForms);
 }
 }
}

C
D

Figure 2.6 Running the unit test with JetBrains ReSharper shows the test failure, which is what we
expect at this point.

The Rhino Mocks dynamic mock library
When performing automated testing on code libraries, developers and testers find it
beneficial to simulate dependencies on which the code relies. By substituting a de-
pendency, the code under test can be evaluated objectively and repeatedly. This tech-
nique delivers great results, but the code clutters the readability of the test and the
code that results is bulky. This is where mocking frameworks like Rhino Mocks come
in. Rhino Mocks can generate derived classes on the fly. This includes interface im-
plementations as well as abstract class derivations. These dynamically created
classes can return hard-code values or assert that a particular method is called with
specific arguments. You can read more or download at http://www.ayende.com/
projects/rhino-mocks.aspx. Oren Eini is the creator of Rhino Mocks, a vibrant open
source project with many contributors.

http://www.ayende.com/projects/rhino-mocks.aspx
http://www.ayende.com/projects/rhino-mocks.aspx

39Working with the model

The new code is the constructor and the guts of the action method. There does not
appear to be much code, so can it possibly be correct? Is that really all the code that’s
necessary in the controller? Yes! Let’s examine what’s going on. First, we are saving
our IScheduleMapper in a private field B so we can access it later. Remember that we
do not care what object is passed into the constructor as long as it matches the type
required. Next, we take the Conference passed into the Index method and use it
to ask the IScheduleMapper instance to “map” it into an array of ScheduleForm
objects C. Once we are finished, we’ll call View() on the Controller base class pass-
ing in our presentation object D. This will cause the Index view to be rendered with
an array of ScheduleForm objects stored in the ViewData.Model property. To prove
that the code we are writing is correct, let’s go back and run our unit test to ensure it
passes, as shown in figure 2.7.

Now that you have expertly test-driven a controller action, all that’s left is to finish off
this feature with a view that takes the presentation object and formats it properly into
HTML. In the controller we are creating a ScheduleForm array by passing in a Confer-
ence that the IScheduleMapper will project into the shape necessary to render the
screen. Although we won’t publish the full code of the ScheduleMapper class here, it is
useful to look at the structure of the ScheduleForm presentation object graph shown
in figure 2.8. The supporting objects represent the time slots and tracks used to create
the visual representation in the view. Using these objects, the view can easily render
the schedule.

2.4.4 Finishing the view

We’ll get into all the different ways to use views in chapter 4, but for now, we’ll take the
simple route and not make use of many view helpers. You will learn about view helpers
later, but for this feature, we’ll stick with simple HTML. Following convention, we’ll
create an MVC View Page in Website/Views/Schedule/. The rest of the work is just
formatting, so we’ll format the name of the conference in big letters at the top of the

Figure 2.7 With the controller fully implemented, the unit test passes, and we can move on.

40 CHAPTER 2 The model in depth

screen and then show the sessions in a table below. If you are curious about the layout
used, browse through the solution delivered with the book. Examine listing 2.5 for the
full source for View.aspx.

<%@ Page Language="C#"
 MasterPageFile="~/Views/Shared/Main.Master"
 AutoEventWireup="true"
 Inherits="CodeCampServer.UI.Helpers.ViewPage.
 ➥ BaseViewPage<ScheduleForm[]>" %>

Listing 2.5 A view that formats our presentation object, ScheduleForm, as HTML

ScheduleForm

ValueObject<ScheduleForm>
Class

Properties

Date
Day

Methods

TimeSlotAssignmentForm

ValueObject<TimeSlotAssignmentForm>
Class

TrackAssignmentForm

ValueObject<TrackAssignmentForm>
Class

TrackForm

ValueObject<TrackForm>
Class

TimeSlotForm

ValueObject<TimeSlotForm>
Class

Properties

ConferenceId
ConferenceKey
EndTime
Id
StartTime

Methods

SessionForm

EditForm<SessionForm>
Class

Properties

Abstract
Conference
Id
Key
Level
MaterialsUrl
RoomNumber
Title

Methods

TimeSlot

PersistentObject
Class

Speaker

KeyedObject
Class

Track

PersistentObject
Class

TTracks

TimeSlotAssignments

TimeSlot

TTrackAssignments

Track

Sessions

TTrack

TTimeSlot

Speaker

Figure 2.8 The complete ScheduleForm presentation model nicely encapsulates the presentation
concern that would otherwise have cluttered our controller and view.

41Working with the model

<asp:Content ContentPlaceHolderID="Main" runat="server">
 <h2>Schedule</h2>
 <table class="schedule">
 <% foreach (var scheduleForm in Model) { %>
 <tr class="headerrow">
 <th class="day">
 Day <%=scheduleForm.Day %>, <%=scheduleForm.Date %>
 </th>
 <% foreach (var track in scheduleForm.Tracks) { %>
 <th>
 <%=track.Name%>
 <% Html.RenderPartial("EditTrackLink", track);%>
 </th>
 <% } %>
 </tr>
 <% foreach (var timeSlotAssignment in
 scheduleForm.TimeSlotAssignments) { %>
 <tr class="timeslotrow">
 <td class="timeslot">
 <%=timeSlotAssignment.TimeSlot.GetName()%>
 <% Html.RenderPartial("EditTimeSlotLink",
 timeSlotAssignment.TimeSlot);%>
 </td>
 <% foreach (var trackAssignment in
 timeSlotAssignment.TrackAssignments) { %>
 <td>
 <% Html.RenderPartial("ScheduleSlot",
 trackAssignment.Sessions,ViewData);%>
 </td>
 <% } %>
 </tr>
 <% } %>
 <% } %>
 </table>
</asp:Content>

Note that we are using <%= operators to output properties of the presentation object.
The code in listing 2.5 is such a mix of server-side code and markup that you might
have trouble following it. When we discuss views in depth, we’ll introduce
techniques to simplify the view and extract even view logic into helpers. You can
imagine what this view would look like if we attempted to pass the Conference
object directly instead of a ScheduleForm object. To get the speaker name, the view
would have to traverse three different object relationships and even perform lookup
logic. It would be a mess. The view in listing 2.5 formats our presentation object and
completes the current feature. If you run the application, you’ll see a screen similar
to figure 2.9.

Output table
for conference

Header row
Left column

New column for each track

New row for
each timeslot

Timeslot goes
in first column

Render admin
links using
partial

Render sessions
using partial

42 CHAPTER 2 The model in depth

2.5 Summary
You have just completed a whirlwind tour of the M in Model-View-Controller. Key take-
aways from this chapter are understanding both the importance of a rich domain
model and when a presentation model makes controllers and view simpler. The
domain model represents concepts as they exist in the real world. The names should
be the same, the operations (methods) should be the same, and the relationships
should mirror how the concepts are used in reality. With an intelligent domain model,
the application has a solid core to build around.

 Left to work with aggregates alone, the controller must take the responsibility for
extracting information out of the object graph for the view to render. This makes the
controller more complicated and harder to test. Complexity and difficult testability
both result in more costly maintenance. This is where the presentation model comes
in. Use presentation model objects to project a deep domain object graph into a flat-
tened view that is easy for a view to render. Creating these presentation objects is a
snap for a controller, and when used properly, test-driving controller logic becomes
easy and predictable.

Figure 2.9 When we run the application, we see our controller and view work as intended. With a well-
defined domain model and presentation model, the controller and view can become quite simple. Test
data is used; the session names are not descriptive.

43Summary

 With a proper model in place, the controller and view are straightforward. As you
build your applications around the ASP.NET MVC Framework, do not forget the para-
mount importance of the model. Model comes first in the pattern name, and it should
come first in your application. If you take shortcuts with the model, the controllers
and views are going to be much more difficult to manage. The model is the core of
each layer in the application. If the core is rotten, the entire application will soon
smell quite bad. With the model now well understood, we’ll turn our attention to con-
trollers in chapter 3.

The controller in depth
The focus of the Model-View-Controller pattern is the controller. With this pattern,
every request is handled by a controller and rendered by a view. Without the con-
troller, presentation and business logic would move to the view, as we have seen
with Web Forms. With the ASP.NET MVC Framework, every request routes to a con-
troller, which is simply a class that implements the IController interface. Micro-
soft provides the base class System.Web.Mvc.Controller to make creating a
controller easy. The controller base class you choose is not crucial because most
request processing goes into executing the ActionResult, which is the type that
each action returns.

This chapter covers
■ Understanding controller anatomy
■ Leveraging viewless controllers
■ Testing controllers
■ Using form and querystring values
■ Binding action parameter
■ Developing action filters
44

45The controller action

 An action is a method that handles a particular request. This method can take no
parameters or many, but by the time the action method finishes executing, there ought
to be one or many objects ready to be sent to the view, and the name of the view should
be selected if the view does not follow the convention of having the same name as the
action. Beyond that, the developer is in complete control regarding how to implement
a controller and its actions. In chapter 1 we covered using the IController interface
directly for controllers that need only one action. This chapter will explore controllers
that use many actions and inherit from the System.Web.Mvc.Controller base class. The
meat of the controller is the action.

3.1 The controller action
Any class that inherits from System.Web.Mvc.Controller can use action methods to
serve web requests. An action method normally returns an ActionResult and can take
zero or many arguments. Parameters are resolved into the action method by a combi-
nation of form values, the Route definition, and the querystring, in that order. The
requirements for a method to be web-callable as an action method are well docu-
mented on http://www.asp.net/mvc. The method

■ Must be public
■ Cannot be a static method
■ Cannot be an extension method
■ Cannot be a constructor, getter, or setter
■ Cannot have open generic types
■ Is not a method of the Controller base class
■ Is not a method of the ControllerBase base class
■ Cannot contain ref or out parameters

An action has a clear purpose and a single responsibility. That responsibility is to
accept arguments, if any, coordinate with relevant dependencies, push objects into
ViewData, and choose a view to render.

 Action methods should not be performing functions such as data access or file
I/O. Action methods exist to perform presentation coordination for a screen/page.
Any supporting logic should be factored into appropriate classes. If you see an action
method that does not fit on one screen without scrolling, consider how many respon-
sibilities it has. You will end up with more maintainable software by factoring much of
the logic into supporting service classes or presentation model classes. If you think of
the whole application’s layering, you should be able to take away all the screens, that
is, views and controllers, without losing system functionality. In other words, if users
upload a batch file to your web app, and the processing of the contents of the batch
file is inside an action method, that logic is in the wrong place. As soon as that control-
ler goes away, the application cannot process batch files. This example is a good rule
of thumb for determining if the action is trying to do too much.

http://www.asp.net/mvc

46 CHAPTER 3 The controller in depth

NOTE In this book, we focus on complex, long-lasting web applications. In line
with that, we do not make compromises to optimize the speed of writ-
ing the application. Software engineering is full of trade-offs, and soft-
ware construction techniques are no exception. If you need a small web
application, you can probably get away with putting all the logic in the
controller action, but realize that you’re trading off long-term maintain-
ability for short-term coding speed. If the application will have a long
life, this is a bad trade-off. The examples in this book are factored for
long life and easy maintenance, so you will notice interfaces employed
to separate concerns.

In listing 3.1 we see a simple controller with a single action. This is a trivial example,
and we will tackle more complex scenarios later. We begin by ensuring that the action
method is public and returns ActionResult. If the method is not public, it will not
be called. At this point, we can push some objects into ViewData and call the View()
method with the name of the view that should render. That is the meat and potatoes
of what it means to be an action method.

using System.Web.Mvc;

namespace MvcInAction.Controllers
{
 public class SimpleController : Controller
 {
 public ActionResult Hello()
 {
 ViewData.Add("greeting", "Hello Readers!");
 return View();
 }
 }
}

The most important point to remember is that the controller action adds objects to
the ViewData and calls for the rendering of a view by name. A popular convention is
to keep the view name the same as the action name for simplicity. If the view name
matches the action name, there is no need to specify it when calling return View().
ViewData is a IDictionary<string, object> at its core. The type is System.Web.
Mvc.ViewDataDictionary, but we only need to worry about the interface. MvcContrib
contains a group of extension methods called ViewDataExtensions which make
ViewData easier to work with within a controller as well as a view. The extensions don’t
take away any functionality; they add functionality. You will see use of these extensions
sprinkled throughout this book.

 Action methods can return any object type, including void. If the type derives from
System.Web.Mvc.ActionResult, that result will be executed. If any other type is
returned, the framework will call the ToString() method on it and return a Content-
Result. The following listed types are the available derivations of ActionResult:

Listing 3.1 The SimpleController decides on ViewData and renders a view

47Simple controllers do not need a view

1 ContentResult —Represents a text result
2 EmptyResult —Represents no result
3 FileResult —Represents a downloadable file (abstract class)
4 FileContentResult —Represents a downloadable file (with the binary content)
5 FilePathResult —Represents a downloadable file (with a path)
6 FileStreamResult —Represents a downloadable file (with a file stream)
7 HttpUnauthorizedResult —Represents the result of an unauthorized HTTP

request
8 JavaScriptResult —Represents a JavaScript script
9 JsonResult —Represents a JavaScript Object Notation (JSON) result that can

be used in an AJAX application
10 RedirectResult —Represents a redirection to a new URL

11 RedirectToRouteResult —Represents a result that performs a redirection
given a route values dictionary

12 PartialViewResult —Base class used to send a partial view to the response
13 ViewResult —Represents HTML and markup
14 ViewResultBase —Base class used to supply the model to the view and then ren-

der the view to the response
15 XmlResult —Action result that serializes the specified object into XML and out-

puts it to the response stream (provided by the MvcContrib library)

Each of these types has a corresponding helper method on the Controller base class
that can be used to easily construct the type and return it. Although most actions will
return a ViewResult or some other type of result, a controller action is not required
to have a view associated with it.

3.2 Simple controllers do not need a view
Most of the examples in this book use a view to render objects to an HTML screen;
however, if you want the behavior but not the display, you would do well to use a con-
troller without a view. Suppose we wanted to support some alternative URLs for Code-
CampServer. In an installation of CodeCampServer, we can have many conferences
listed. Some conferences are past and some future. Suppose we wanted an easy URL to
pull up the next Code Camp. Let’s say this URL would be: http://www.codecamp-
server.org/nextconference. We would start by defining a special route because this
is a special case. This route uses the default API included in the ASP.NET MVC Frame-
work. Both chapter 2 and the CodeCampServer source code make use of the route
API wrappers found in MvcContrib. You can configure routes in many ways, so we are
showing a variety of techniques, which we explain in depth in chapter 5. The route for
our simple controller as defined in listing 3.2 is a simple route for the purposes of this
example. It uses the included API from ASP.NET 3.5 Service Pack 1, which includes the
routing capability. As covered in chapter 5, when you progress to more control over
routes, you will need a richer API, such as the one used by CodeCampServer, or you
can create your own wrapper.

48 CHAPTER 3 The controller in depth

RouteTable.Routes.MapRoute("next", "nextconference",
 new
 {
 controller = "redirect",
 action = "nextconference"
 });

We want the ASP.NET MVC Framework to route this URL to a controller named Redi-
rectController B. The default action will be NextConference C. Listing 3.3 shows
the full source for the RedirectController. Note that there is no need to call the
View() method because we do not have or need a view.

using System.Web.Mvc;
using CodeCampServer.Core.Domain;
using CodeCampServer.Core.Domain.Model;

namespace MvcInAction.Controllers
{
 public class RedirectController : Controller
 {
 private readonly IConferenceRepository _repository;

 public RedirectController(IConferenceRepository
 conferenceRepository)
 {
 _repository = conferenceRepository;
 }

 public RedirectToRouteResult NextConference()
 {
 Conference conference = _repository.GetNextConference();

 return RedirectToAction("index", "conference",
 new {conferenceKey = conference.Key});
 }
 }
}

As we walk through the NextConference action, we notice that we are coordinating
dependencies to get the job done. Figure 3.1 illustrates the controller and its
dependencies.

 The IConferenceRepository instance knows how to retrieve the appropriate con-
ference that is next on the schedule. After we have the conference that is next, we can
redirect to the URL that will route to the ConferenceController, which knows how to
work with a single conference. We will discuss the design of this controller shortly, but
notice that the dependency, IConferenceRepository, is passed in through the con-
structor. What is dependency injection (DI)? It’s a fancy term for passing objects into a con-
structor or public setters. The default controller factory supplied with the ASP.NET MVC
Framework does not know how to resolve constructor dependencies of controllers, but

Listing 3.2 Adding a route to redirect with a special controller action

Listing 3.3 A view is unnecessary when performing a redirect.

B
C

Return derived type
of ActionResult
there are several IControllerFactory implementations available in the MvcContrib

49Simple controllers do not need a view

open source project. For this example, we use the StructureMapControllerFactory
source copied from MvcContrib. We register the controller factory with a single line of
code as shown in listing 3.4.

ControllerBuilder.Current.SetControllerFactory(
 new StructureMapControllerFactory());

public class StructureMapControllerFactory : DefaultControllerFactory
{
 protected override IController GetControllerInstance(
 Type controllerType)
 {
 return (IController) ObjectFactory.GetInstance(controllerType);
 }
}

Listing 3.4 Using an MvcContrib controller factory enables IoC support.

Figure 3.1 The RedirectController depends on one interface. It declares the dependency
in its constructor which makes dependency injection easier.

Initialize ControllerFactory
in Global.asax

The inversion of control principle and DI
Normally when code executes other code, there is a linear flow of creation and exe-
cution. For instance, if I have a class that depends on another class, I will create that
class with the "new" operator, then execute the class by calling a method. If I used
inversion of control (IoC), I would still call methods on the class, but I would require
an instance of the class passed into my constructor. In this manner, I yield control of
locating or creating my dependency to the calling code. DI is the act of injecting a
dependency into a class that depends on it. Often used interchangeably, IoC and DI
yield loosely coupled code and are often used with interfaces. With interfaces, class-
es declare dependencies as interfaces in the constructor arguments. Calling code
then locates appropriate classes and passes them in when constructing the class.

IoC containers come into play to assist with managing this technique when used
through an application. There are plenty of IoC containers to choose from, but the
favorites at this time seem to be StructureMap and Castle Windsor found at http://
structuremap.sourceforge.net and http://www.castleproject.org/container/index.
html respectively.

http://www.castleproject.org/container/index.html
http://www.castleproject.org/container/index.html
http://structuremap.sourceforge.net
http://structuremap.sourceforge.net

50 CHAPTER 3 The controller in depth

We could just as easily have used the WindsorControllerFactory, SpringController-
Factory, or UnityControllerFactory, all supplied with MvcContrib. Using an IoC con-
tainer to construct the controller allows us to externalize dependency configuration.
You’re probably wondering how to test this controller that does not have a view because
we are doing a redirect directly in the controller. Regardless of the IoC container used,
testing is still the same.

3.3 Testing controllers
The focus of this section is testing controllers. Of the different types of automated test-
ing, we are concerned with only one type at this point: unit testing. Unit tests run fast
because they do not call out of process. In a unit test, dependencies are simulated so
the only production code running is the controller code. For this to be possible the
controllers have to be well designed. A well-designed controller

■ Is loosely coupled with its dependencies
■ Uses dependencies but is not in charge of locating or creating those dependencies
■ Has clear responsibilities and only handles logic relevant to serving a web request

A well-designed controller does not do file I/O, database access, web service calls, and
thread management. The controller may very well call a dependency that performs
these functions, but the controller itself should be responsible only for interaction
with the dependency, not for performing the fine-grained work. This is very important
to testing because good design and testing go hand in hand. It’s very difficult to test
poorly designed code.

NOTE Writing automated tests for all code in a code base is a best practice. It
provides great feedback when the test suite is run multiple times per day.
If you’re not doing it now, you should start immediately. Several popular,
high quality frameworks for automated testing available include NUnit
and MbUnit. At the time of writing, NBehave, MSTest, and xUnit are also
available, but they are not as widely adopted as NUnit or MbUnit. All are
free (with the exception of MSTest, which requires the purchase of Visual
Studio) and they simplify testing code.

In this section, we will walk through testing our viewless RedirectController.

3.3.1 Testing the RedirectController

The RedirectController must find the next conference and issue a redirect to
another URL so that a single conference can be displayed on the screen. This control-
ler must find the conference and ask for a redirect to the action that can take it from
there. The ASP.NET MVC Framework provides a redirect mechanism that makes it
unnecessary to use Response.Redirect(), which is more difficult to test. The action
method in question returns an object that has public properties, which can be evalu-
ated in a test. The action result contains an Execute method that performs the redi-

rect, but the controller action merely returns an object. This is important for the easy

51Testing controllers

testing of controller actions. In listing 3.5, we set up a unit test for this code along with
fake implementations of the dependencies on which the RedirectController relies.

using System;
using System.Web.Mvc;
using CodeCampServer.Core.Domain;
using CodeCampServer.Core.Domain.Model;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;

namespace MvcInAction.Controllers.UnitTests
{
 [TestFixture]
 public class RedirectControllerTester
 {
 [Test]
 public void ShouldRedirectToTheNextConference()
 {
 var conferenceToFind =
 new Conference{Key = "thekey", Name = "name"};
 var repository = new
 ConferenceRepositoryStub(conferenceToFind);

 var controller = new RedirectController(repository);

 RedirectToRouteResult result = controller.NextConference();

 Assert.That(result.RouteValues["controller"],
 Is.EqualTo("conference"));
 Assert.That(result.RouteValues["action"],
 Is.EqualTo("index"));
 Assert.That(result.RouteValues["conferenceKey"],
 Is.EqualTo("thekey"));
 }

 private class ConferenceRepositoryStub : IConferenceRepository
 {
 private readonly Conference _conference;

 public ConferenceRepositoryStub(Conference conference)
 {
 _conference = conference;
 }

 public Conference GetNextConference()
 {
 return _conference;
 }

 public Conference[] GetAllForUserGroup(UserGroup usergroup)
 {
 throw new NotImplementedException();
 }

 public Conference[] GetFutureForUserGroup(UserGroup usergroup)

Listing 3.5 RedirectControllerTester: ensuring we redirect to the correct URL

Create using
simulated

dependencies

Exercise class
under test

Assert
correct
results

B

 {

52 CHAPTER 3 The controller in depth

 throw new NotImplementedException();
 }

 public Conference GetById(Guid id)
 {
 throw new NotImplementedException();
 }

 public void Save(Conference entity)
 {
 throw new NotImplementedException();
 }

 public Conference[] GetAll()
 {
 throw new NotImplementedException();
 }

 public void Delete(Conference entity)
 {
 throw new NotImplementedException();
 }

 public Conference GetByKey(string key)
 {
 throw new NotImplementedException();
 }
 }
 }
}

Notice that most of the code listing is test double code, and not the Redirect-
Controller test itself. We have to stub out an IConferenceRepository implementa-
tion B because calling that interface inside the controller action provides the next
conference. How it performs that search is beyond the scope of this chapter and is
irrelevant to the controller. When glancing at this test, you probably think that it’s too
complex for a single unit test. We will see shortly how to reduce the amount of code in
the unit test fixture. Reducing code starts with making dependencies explicit.

3.3.2 Making dependencies explicit

There are only three real lines of code in the RedirectController. The controllers
should all be thin, and this is a good example. The logic for finding the correct Con-
ference object is a data access issue, and does not belong in the controller, so it’s fac-
tored into a repository object. Only logic related to presenting information to the user
belongs in the controller. In this case, the user experiences a redirect. This controller
demonstrates proper separation of concerns, and it’s easily unit tested because it’s
only involved with a single responsibility. We are able to simulate dependencies using
test doubles.

 In Figure 3.2, you see the unit test passing because we were able to properly simu-
late this controller’s dependencies and verify that given the dependencies, the con-
troller will do its job correctly.

53Testing controllers

3.3.3 Using test doubles, such as stubs and mocks

As far as the controller is concerned, its caller is passing in an implementation of the
necessary interface. This interface is a dependency, and the controller makes use of it
in an action method. How the dependency is passed in or what class implements the
interface is irrelevant. At runtime, a production class will be passed into the control-
ler, but at the time of unit testing, we use stand-in objects, or test doubles, to simulate
the behavior of the dependencies. There are different types of simulated objects, and
some of the definitions overlap. There are entire books written about testing and how
to separate code for testing using fakes, stubs, and mocks, and if you’re interested in
exploring the subject further, we highly recommend reading Michael Feather’s Work-
ing Effectively with Legacy Code. In short, the terms fake and test double are generic terms
for a nonproduction implementation of an interface or derived class that stands in for
the real thing. Stubs are classes that return hard-code information solely for the pur-
pose of being called. The ConferenceRepositoryStub shown in listing 3.5 is an exam-
ple of a stub. A mock is a recorder that remembers being called so that we can assert
the behavior later on. It remembers arguments passed in and other details depending
on what capability has been programmed into it.

 One downside to using hand-coded stubs and mocks is that you have many lines of
code just to satisfy an interface implementation that may have six methods. This is not
the only option, however. A favorite library for automating the creation of mocks and
stubs is Rhino Mocks, originally written by Oren Eini. Rhino Mocks drastically reduces
the number of lines of code in a unit test fixture by streamlining the creating of test
doubles. If code is designed so that all dependencies are injected into the constructor,
as shown in listing 3.6, unit testing becomes easy and soon becomes a repetitive pat-
tern of faking dependencies and writing assertions. Over time, if you employ this tech-
nique, you will see a marked improvement in the quality of your code.

public RedirectController(IConferenceRepository conferenceRepository)
{
 _repository = conferenceRepository;

Listing 3.6 Controllers can define dependencies in the constructor.

Figure 3.2
Redirect test passing
}

54 CHAPTER 3 The controller in depth

Remember how many lines of code we wrote for a stubbed implementation of ICon-
ferenceRepository? Now, examine listing 3.7 and notice how short this code listing is
in comparison. Rhino Mocks supports setting up dynamic stubs as well as dynamic
mocks. The lines with Stub(…) are used so that a stubbing method or property always
returns a given object. By using the Rhino Mocks library, we can provide dependency
simulations quickly for easy unit testing.

using System.Web.Mvc;
using CodeCampServer.Core.Domain;
using CodeCampServer.Core.Domain.Model;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;
using Rhino.Mocks;

namespace MvcInAction.Controllers.UnitTests
{
 [TestFixture]
 public class RedirectControllerTesterWithRhino
 {
 [Test]
 public void ShouldRedirectToTheNextConference()
 {
 var conferenceToFind = new Conference
 {
 Key = "thekey", Name = "name"
 };

 var repository =
 MockRepository.GenerateStub<IConferenceRepository>();

 repository.Stub(r =>
 r.GetNextConference()).Return(conferenceToFind);

 var controller = new RedirectController(repository);
 RedirectToRouteResult result = controller.NextConference();

 Assert.That(result.RouteValues["controller"],
 Is.EqualTo("conference"));
 Assert.That(result.RouteValues["action"],
 Is.EqualTo("index"));
 Assert.That(result.RouteValues["conferenceKey"],
 Is.EqualTo("thekey"));
 }
 }
}

A dynamic mocking library like Rhino Mocks is not appropriate in every unit testing
scenario. The usage in listing 3.7 is the bread-and-butter scenario that reduces the
amount of setup code inside unit tests. More complex needs can quickly stress the
Rhino Mocks API and become hard to read. Although Rhino Mocks supports almost
everything you could want to do, the readability of the tests is important to maintain.

Listing 3.7 Using Rhino Mocks to streamline code necessary for fakes

Stub using
Rhino Mocks

Return a specific
conference

Assert
correct
results
When you need to assert method parameters of dependencies or do something special,

55Testing controllers

do not be afraid to push Rhino Mocks to the side and leverage a concrete mock or stub
to keep the test readable.

3.3.4 Elements of a good controller unit test

If you’re just getting started with unit testing you might run into common pitfalls
and stub your toe. Again, this is not meant to be an entire course on testing. There
are already comprehensive books on that, such as The Art of Unit Testing by Roy
Osherove. This book specifically addresses writing unit tests for controller classes. We
focus heavily on testing controller classes because test-driving the controllers ensures
they are well designed. It’s nearly impossible to test-drive code that ends up with a
bad design.

NOTE Poorly designed code tends to be untestable, so observable untestability is
a very objective gauge of poorly designed code. A good controller unit test
runs fast. We are talking 2000 unit tests all running within 10 seconds. How
is that possible? .NET code runs fast, and if you’re running unit tests, you’re
waiting only for the processor and RAM. Unit tests run code only within the
AppDomain, so we do not have to deal with crossing AppDomain or Pro-
cess boundaries. You can quickly sabotage this fast test performance if you
break a fundamental rule of unit testing, and that is allowing out-of-process
calls. Out-of-process calls are orders of magnitude slower than in-process
calls, and your test performance will suffer. Ensure that you’re faking out
all controller dependencies, and your test will continue to run fast.

You also want your unit tests to be self-sufficient and isolated. You might
see repeated code and think you need to refactor your unit tests. Resist
this temptation and create only test helpers for the cross-cutting con-
cerns. The DRY principle (Don’t Repeat Yourself) does not apply to test
code as much as to production code. Rather, keeping test cases isolated
and self-contained reduces the change burden when the production
code needs to change. It’s also more readable if you can scan a unit test
and see the context all in one method.

The tests should also be repeatable. That means no shared global vari-
ables for the test result state, and no shared state between tests in gen-
eral. Keep a unit test isolated in every way, and it will be repeatable,
order-independent, and stable.

Pay attention to pain. If your tests become painful to maintain, there’s
something wrong. The tests should enable development, not slow it
down. If you start to think that you could move faster without writing the
tests, look for technique errors or bad design in the production code.
Get a peer to review the code. Correctly managed design and tests enable
sustained speed of development whereas poor testing techniques cause
development to slow down to a point where testing is abandoned. At that
point, it’s back to painstaking, time-intensive manual testing. With that
critical practice safely stowed in our tool belt, let’s explore actions in

more detail.

56 CHAPTER 3 The controller in depth

3.4 Simple actions and views
To demonstrate how a controller can do interesting things without a view, our previ-
ous controller, RedirectController, did not use a view. A controller can work inde-
pendently from a view. More interesting (and common), though, is a controller that
pushes objects into ViewData and then returns a ViewResult with a named view to
render. The only coupling between the controller and a view is the view name
declared in the call to return View().

 Views can be simple or complex, and complex views can require many objects to be
passed in as view data. Simple views, likewise, often require only a single object or no
object at all. In listing 3.8, we see an action in the CodeCampServer project that is
responsible for fulfilling a request to display the registration form. This screen needs to
display header information about the Conference and then a list of text boxes to collect
an attendee registration. The URL that would be routed to this action would be http:
//CodeCampServer.org/AustinCodeCamp09/Attendee/New. Because the routes in
CodeCampServer specify the first segment named conferenceKey, the ASP.NET MVC
Framework will extract this portion of the URL and add it to RouteData to make it avail-
able to model binders. The argument will be used to resolve the action parameter,
conference, and the action code in listing 3.8 will be able to use it when preparing to
render the view.

public ViewResult New(Conference conference)
{
 var model = new AttendeeForm {ConferenceID = conference.Id};
 return View("Edit", model);
}

Listing 3.8 Action passes information so the view can render a data entry screen

Figure 3.3 The Edit view can be used for a new attendee or existing attendee.

57Working with form values

When views containing forms, like the one in figure 3.3, are involved, the potential for
interactive web applications makes us think about how to pass arguments from the
browser back in to a controller. One of the fundamental data transactions of the web
is the form post.

3.5 Working with form values
An HTML page that has a <form method="POST"/> tag will generate a POST back to the
same URL, unless an alternate action is specified. When a page is posted to a URL, all
form fields are translated into a form values collection. For instance, if the page con-
tains <input type="text" name="FirstName"/>, user entries in that text box will be
entered into the form collection and available to the server code that handles the
request. With the ASP.NET MVC Framework, form values are routed automatically into
the controller action. The action parameters are matched to values in the form collec-
tion by name. In figure 3.2, we see a page containing a form with text boxes that col-
lect attendee registration information for CodeCampServer. Each of these text boxes
has a unique name used to match action parameters.

 Looking at listing 3.9, we see one option for receiving the form post. Notice the
names of the parameters on this method. The parameter conferenceKey is still there
and will be matched to the appropriate part of the route. Next are firstName, last-
Name, and so on. The ASP.NET MVC Framework will search to match parameters to
this method. The matching mechanism matches by name. Because firstName exists
in the form collection, the value will be passed into this method along with the other
parameters. The end result is that all the attendee registration information is trans-
lated into action parameters and passed in. As developers, we don’t have to do a
thing to extract the appropriate information from the form collection on the
request. We must only ensure the names of the action parameters match up with the
names posted to the URL.

public ActionResult Save(string conferenceKey, string firstName,
 string lastName, string email,
 string webpage)
{

}

Already, you’re probably wondering about conflicts. What happens if a form or query-
string value is named conferenceKey? Which value will be used? The ASP.NET MVC
Framework matches action parameters in the following order:

1 Form values
2 Route arguments
3 Querystring parameters

Listing 3.9 Form values are automatically passed to the action

Method body
omitted

58 CHAPTER 3 The controller in depth

Parameters on an action method are always matched by name in the order given.
If there is a duplicate, the first one found wins, and subsequent duplicates are
ignored. If there is a valid reason to have a form value and route argument named the
same, your code will have to handle extracting the route values explicitly using
RouteData.GetRequiredString("key"). In our sample in listing 3.9, all the parame-
ters are of type string. Because web requests are processed in string form, we will
need some mechanism to parse them into more complex types. We will cover this in
depth in the section on model binders.

NOTE Because the form values are processed first, there are certain form
parameter names you should not use (they will likely cause unexpected
behavior if you do) such as action and controller.

Already we begin to see the value proposition of the ASP.NET MVC Framework, and we
understand why folks also enjoy Ruby on Rails and MonoRail. These frameworks
abstract away repetitive plumbing code like mapping query strings and form parame-
ters to variables and leave only the interesting code to be written. We have seen how
form and route values are mapped into action methods. Next we will examine doing
the same with querystring values.

3.6 Processing querystring parameters
Querystrings are mapped into a controller action in a fashion similar to form values—
by name matching. If the ASP.NET MVC Framework does not find a matching value in
the form collection, it will then search the querystring for a parameter that matches.
Upon finding the matching value, it will pass it through the appropriate action param-
eter. In this way, we can alter our URLs to provide a dynamic environment within a sin-
gle controller action.

 In listing 3.10, this controller is going to pass along the greeting to the view as the
ViewData.Model. A URL similar to ~/hello?greeting=Hello+Jeffrey would cause
the page to output “Hello Jeffrey” on the screen. If the querystring value is missing,
the parameter will be null. Since System.String is a nullable type, we have no prob-
lem here.

using System.Web.Mvc;

namespace MvcInAction.Controllers
{
 public class HelloController : Controller
 {
 public ActionResult Index(string greeting)
 {
 ViewData.Model = greeting;
 return View();
 }
 }

Listing 3.10 Querystring parameters are passed to the action just like form values.
}

59Binding more complex objects in action parameters

NOTE The ASP.NET MVC Framework matches querystring values based com-
pletely on name. The order is unimportant. As an exercise, pull down the
code for this chapter and change the order of the action parameters. The
behavior of the application will be unaffected. Similarly, change the
order of the querystring parameters. No change. The name of the param-
eter is what matters.

So far, all of our action parameters have been strings. In practice, we need to be able
to use a diverse set of types in our application. We will tackle that next. Two main con-
cerns exist when binding from the form, route, and querystring. The first is to match
the value based on key. The next is to parse it into the correct object. With string
action parameters, there is no parsing because string is the native type. Now let’s
investigate how to parse more complex types.

3.7 Binding more complex objects in action parameters
As soon as we get away from Hello World applications, we are faced with complex types,
and we need to be able to accept them in action parameter lists. In listing 3.9, we saw
an action method signature that accepted a form posting as a series of string parameters.
A better binding method uses a form object, such as the AttendeeForm shown in list-
ing 3.11. This class is from CodeCampServer, which leverages a value object supertype
from the Tarantino project, ValueObject<T>. In your code, this may be irrelevant.

public class AttendeeForm : ValueObject<AttendeeForm>
{
 public virtual Guid ConferenceID { get; set; }
 public virtual string FirstName { get; set; }
 public virtual string LastName { get; set; }
 public virtual string EmailAddress { get; set; }
 public virtual string Webpage { get; set; }
}

public ActionResult Save(AttendeeForm form){}

The mechanism in charge of matching action parameters and pulling them in from
the request is the IModelBinder interface. Out of the box, the class that matches .NET
Framework types, simple or nested, is the System.Web.Mvc.DefaultModelBinder
class. The DefaultModelBinder class can bind any type with a .NET TypeConverter,
such as Int32, DateTime, Guid, etc. It can also match

■ Arrays
■ Collections
■ Dictionaries
■ Complex objects containing any of these types

The built-in binding capabilities are powerful, and they work for all the primitive types,
both on their own and when nested within complex types. We still need the capability

Listing 3.11 A dedicated form object can encapsulate the data of a form post.

Resulting action
method signature

60 CHAPTER 3 The controller in depth

to bind our own custom types, such as the Conference type in CodeCampServer. For
this, we will need to implement our own IModelBinder instance. In listing 3.12, we see
a controller action that requires a custom type as well as a custom model binder. The
listing handles an HTTP request that has a parameter named conference, which con-
tains the conference key.

public class BindConferenceController : Controller
{
 public object Index(Conference conference)
 {
 return conference.Name;
 }
}

using System.Web.Mvc;
using CodeCampServer.Core.Domain;
using CodeCampServer.Core.Domain.Model;

namespace MvcInAction
{
 public class ConferenceModelBinder : DefaultModelBinder
 {
 private readonly IConferenceRepository _repository;

 public ConferenceModelBinder(IConferenceRepository repository)
 {
 _repository = repository;
 }

 public override object BindModel(
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 ValueProviderResult providerResult =
 bindingContext.ValueProvider[bindingContext.ModelName];

 Conference conference =
 _repository.GetByKey(providerResult.AttemptedValue);

 return conference;
 }
 }
}

One more step is needed to hook in this custom model binder. When the application
starts up, we need to register our model binder with the ASP.NET MVC Framework. We
can do that easily in the Global.asax.cs file. Listing 3.13 shows the one line of code
necessary to register our custom model binder. Here you see that we are passing in a
stub for the IConferenceRepository. In your application, you would probably resolve
the model binder with an IoC container or a factory.

Listing 3.12 Using a custom model binder to take control over binding custom types

Inherit
from Default
ModelBinder

Binder has
dependencies

Find value
matching name

Find Conference
by key

61Options for passing ViewData

ModelBinders.Binders.Add(typeof (Conference),
 new ConferenceModelBinder(
 new ConferenceRepositoryStub()));

It’s a good idea to use meaningful types in controller actions. If the action parameters
are all strings, ints, and Guids, the action methods will be cluttered with lookup
code while the controller struggles to convert a string to a better object. By leveraging
the model binder mechanism, we can externalize this lookup and mapping code so
that the controller actions can concentrate on making “what” decisions about how the
screen will behave. This results in smaller action methods and more maintainable con-
trollers. When you browse through CodeCampServer, look at the types passed into
action methods. Rarely are they .NET primitive types.

 The resolution of action parameters coupled with model binders makes it easy to
craft an action method that takes in information from a web request. We can use the
form values, route values, and the querystring to make the action behavior more
dynamic. Again, notice how effortless it is to consume this request data. We do not
have to write any repetitive code to pull these values in. Rather, the ASP.NET MVC
Framework finds the correct parameter and maps it to the action parameter. Our cus-
tom model binders take it from there and convert the values to our custom types
where necessary. Now that we have objects coming into our action, we will examine
how we push objects out to the view.

3.8 Options for passing ViewData
The System.Web.Mvc.Controller base class has a ViewData property, which is essen-
tially a dictionary. You can use it as is or leverage extension methods in MvcContrib for
a richer API on top of the IDictionary<string, object> type. ViewData has a Model
property that is a first-class citizen in the view. The primary object passed to the view
should go in this property. When more objects are necessary, add them to the diction-
ary and retrieve them in the view by key name.

 We have several options for passing view data from a controller action to a view.
After you start creating your own types for view data, the options increase well beyond
those presented here. The first option, and the default mechanism you might use at
first, is to use the built-in View() method parameter. Listing 3.14 demonstrates this. By
passing in the object directly to the View() method, the framework will automatically
assign it to ViewData.Model.

public ActionResult ViewDataModel(Conference conference)
{
 return View(conference);
}

Listing 3.13 Register our custom model binder when the web application starts.

Listing 3.14 Callling the View() method on the Controller base class

62 CHAPTER 3 The controller in depth

The default mechanism for adding additional objects to a dictionary is to assign each
object a key. ViewData is no different; however, with MvcContrib, we have an option
available that allows us to forgo string keys for access to all objects in ViewData. Using
ViewDataExtensions, we can add an object into ViewData without giving it a key.
These extensions will implicitly use the type of the variable as the key in the dictionary,
and the following code can be used in the view to retrieve the Conference added in
listing 3.15: ViewData.Get<Conference>();. No casting, no dictionary keys. Now you
have strong typing on many objects. The only constraint is that you can add only one
Conference to ViewData. If you need to add multiple objects of the same type, you can
fall back and assign a unique key to each one.

public ActionResult MultipleObjectsInViewData(Conference conference, string
someOtherVariable)

{
 ViewData.Add(new Conference());
 ViewData.Model = someOtherVariable;
 return View();
}

For some scenarios, a single object may be sufficient for the view to render. In others,
you will need several objects. In our opinion, because IDictionary is very flexible, it’s
appropriate for most uses. The extension methods from MvcContrib enhance the
experience even more, and together, we recommend their use in most scenarios. Set
the primary object to ViewData.Model and put the others in the dictionary. While
binding objects into action methods and passing objects to ViewData, we often need
to insert code in unique places and even share this code among controllers. Filters
provide a way to do this.

3.9 Filters
The function of a filter in ASP.NET MVC is similar to its function in the real world.
Using filters, we can filter out requests or modify the data that gets through. The
notion of a filter applies when using the System.Web.Mvc.Controller base class,
which, in our experience, is most of the time.

 Four interfaces combine to provide filtering support as a controller is executing:

■ IActionFilter —Before and after hooks when an action is executing
■ IResultFilter —Before and after hooks when an action result is executing
■ IAuthorizationFilter —Hooks when ASP.NET is authorizing the current user
■ IExceptionFilter —Hooks when an exception occurs during the execution of

a controller

The Controller base class implements all these interfaces, so to hook into any of
these extensibility points, all you have to do is override the appropriate method in
your controller. Overriding controller lifecycle methods is not the engaging part of
filters, however. The interesting part is how with filter attributes, you can reuse filters

Listing 3.15 Passing a single object directly to the View method

Using MvcContrib
ViewDataExtensions

63Filters

on many controllers and even pick and choose which filters should apply to which
actions. These filter attributes can be applied on the action method or on the control-
ler class definition (which will cause them to apply to all actions in the controller). Fil-
ter attributes supplied by the ASP.NET MVC Framework include

■ System.Web.Mvc.ActionFilterAttribute
■ System.Web.Mvc.OutputCacheAttribute
■ System.Web.Mvc.HandleErrorAttribute
■ System.Web.Mvc.AuthorizeAttribute
■ System.Web.Mvc.ValidateAntiForgeryTokenAttribute
■ System.Web.Mvc.ValidateInputAttribute

Implementing one of the filter interfaces is the easiest way to intercept the execution
of the controller. It’s not the only way to interrupt, or prevent, the execution of a web
request. The controller also has a notion of an action method selector. The action
method selector is in charge of selecting which action method to execute. By decorat-
ing action methods with the following attributes, you can alter the default mechanism
for action method selection:

■ System.Web.Mvc.AcceptVerbsAttribute —Limits action selection to requests
of the specified HTTP verb type

■ System.Web.Mvc.NonActionAttribute —Prevents action method from being
selected

To affect the selection of an action method for execution, you can create your own
derivations of ActionMethodSelectorAttribute. Probably the most useful selector is
the AcceptVerbsAttribute, where you can limit an action to the “POST” verb so that
“GET” requests do not modify server state. It’s most important to understand the
order of execution of the controller, when many filters are layered on. In listing 3.16,
we see a controller that has many filters. You can view the code of LoggingAction-
FilterX in the code that accompanies the book. This class implements each filter
interface listed previously and writes to the response on each hook method. The
result is the order of operations shown in figure 3.4.

using System.Web.Mvc;

namespace MvcInAction.Controllers
{
 [LoggingActionFilterA(LogMessage = "controller, index 1", Order = 0)]
 [LoggingActionFilterB(LogMessage = "controller, index 2", Order = 1)]
 public class FilterExampleController : Controller
 {
 [LoggingActionFilterA(LogMessage = "action, index 1", Order = 0)]
 [LoggingActionFilterB(LogMessage = "action, index 2", Order = 1)]
 public ActionResult Index()
 {
 Response.Write("Action body executing
");

Listing 3.16 Demonstrating many ways filters can be applied to a controller

64 CHAPTER 3 The controller in depth

 return Content("Action internals
");
 }
 }
}

LoggingActionFilterA and LoggingAction-
FilterB implement all four of the filter inter-
faces and output text to the response stream at
each hook point. The Order property on the
attributes controls the order, and we see that
the controller always has the first and last word
when hooking filter points.

3.10 Summary
Controllers are the center of an MVC presenta-
tion layer. Controllers handle all the coordina-
tion between the Model and the View. Without
the controller, we must find another place for
this presentation logic. In the ASP.NET MVC
Framework, logic is separated into controllers
and actions. Actions can accept parameters
and can call for the rendering of a view. Actions
are not required to have a view, but they com-
monly do. When using a view, we have several
methods for passing view data, and the pre-
ferred method is to use an object that best suits
your needs. Keep in mind that the default way
might not be best for your situation.

 Action parameters are matched by name
first from the form, then the route, and then querystring. Order is unimportant. If one
of the responsibilities of the controller is to perform some task for every action, consider
an action filter. In fact, if this task is applicable for many controllers, consider creating
a layer supertype that applies this filter. When you’re starting a new application based
on the ASP.NET MVC Framework, consider creating a layer supertype right from the
start. Chances are, the need to make some functionality available to all controllers
through inheritance will surface, and it will save you time if you have accumulated many
controllers. Of course, YAGNI (You aren’t going to need it) applies here, so evaluate your
scenario and choose wisely. We often find a layer supertype comes into play at some
point. The variable is when.

 Wielded without caution, controllers have the potential of becoming just as large
and convoluted as Page_Load methods in Web Forms. Armed with test-driven develop-
ment and a disciplined approach to separation of concerns, you will ensure the main-
tainability of your presentation layer. With controller techniques under our belt, we
need to fully understand the options for formatting output to the screen using views.

Figure 3.4 The output shows the order of
execution of filters when many are applied
at both the controller and action level.
This is the topic of chapter 4.

The view in depth
Views have long been abused in the Microsoft web application space. In Classic
ASP, and in IDC/HTX before that, the view was the primary programming tool for
the Microsoft-centric developer. Using the Server Page pattern, developers used
IDC and ASP pages as transaction scripts to perform a single operation and render a
screen. Each page has logic, behavior, and a UI. ASP.NET 1.0 sought to separate
logic from the UI rendering to make applications easier to maintain and extend,
because having logic intermixed with screen rendering had often proved to be an
unworkable solution for many teams. Although it certainly was possible for teams to
separate the concerns in their applications, Microsoft had provided no guidance
on how to do so, and most samples and demo applications encouraged the inter-
mingling of concerns.

 ASP.NET set the foundation for how a Windows web server would handle web
requests. The framework has proven highly scalable and robust. Web Forms, one

This chapter covers
■ Rendering views
■ Techniques for working with ViewData
■ Error reporting
■ Handling complexity
65

66 CHAPTER 4 The view in depth

part of the .NET framework, has faced maintainability challenges. Although Web
Forms allowed scores of VB6 programmers to make the transition from Windows
applications to web applications, these developers did not fall into the “pit of success.”
The code-behind idea did, in fact, separate logic from UI rendering, but in practice,
and coupled with guidance available in the industry, the logic ended up merely sepa-
rated in a file instead of abstracted into new concepts. Web Forms continued the
Server Page pattern started in IDC and carried through Classic ASP. The ASP.NET MVC
Framework attempts to provide developers with an alternative to the Web Forms
Server Page pattern. In this chapter, we’ll see how simple a view can be and how to
handle complex views. We’ll cover techniques for working with ViewData, view help-
ers, form validation, and other complex issues. Before diving into a specific topic, let’s
look at the major differences between ASP.NET MVC views and Web Forms.

4.1 How ASP.NET MVC views differ from Web Forms
ASP.NET MVC views and Web Forms views can exist side by side, so it is possible to do a
phased port from Web Forms to ASP.NET MVC. Web Forms serve a much bigger pur-
pose in the application than MVC views. By the time your code executes in a Web
Form Page_Load, the framework has already

■ Selected the Web Form to execute
■ Constructed the Web Form and all its design-time controls
■ Processed any ViewState received

With a Web Form, your code runs as the page is executing. There are plenty of ways to
get into the pipeline before the page starts executing, but they are not obvious or easy.
A Web Form is built upon the concept of a control, which is the building block of the
page. Controls can have child controls, and System.Web.UI.Page derives from
System.Web.UI.Control. A control’s purpose is to be responsible for the behavior
and rendering of what will ultimately become an HTML element on the page. During
the heyday of browser wars and incompatibility, controls were able to render different
markup based on the browser receiving the page. This was a useful feature in 2002
and 2003. With Internet Explorer 7 and FireFox 2+ now responsible for more than
half of the markup rendering, most web users are employing a more standards-
compliant web browser than in 2002; the need to render different markup to different
browsers has diminished.

 ASP.NET MVC Views take back control of HTML markup. Although it is possible to
use the rendering capabilities of some existing controls, the guidance with MVC Views
is to lay out the HTML by hand and use server delimiters to make parts of the view
dynamic. MVC Views leverage the Web Forms rendering engine but jettison the post-
back logic, ViewState, and control hierarchy. An MVC view renders top to bottom and
then goes away. It also has much less responsibility than a Web Form. The view accepts
objects in its ViewData dictionary and transforms those objects into a response suit-
able for the web. That is it. No decision logic, no permissions, no database access, no

67Folder structure and view basics

web service calls, just rendering. MVC views do not use a code-behind file, but you can
retain a code-behind while migrating from Web Forms if necessary. This ability comes
from the fact that System.Web.Mvc.ViewPage derives from System.Web.UI.Page.

 If you are porting an application from Web Forms to ASP.NET MVC and you have
not rigorously factored logic into many supporting classes, you will find yourself mov-
ing much of your code-behind logic into a controller. You will also probably find that
much of the logic does not belong in a controller. You will most certainly need to
develop additional classes to absorb logic that has inappropriately lived in a Web Form
code-behind file. We’ll begin by exploring the folder structure for views and some of
the basics.

4.2 Folder structure and view basics
Views employ conventions for naming and place-
ment. Although these are overridable, we find that
the default structure and naming work well for many
small and midsize projects. For larger projects, the
architecture needs to be modular, so it then becomes
necessary for views to live with the parent module.

 In figure 4.1, we see the solution explorer for
CodeCampServer. The Views folder inside the web
application is the home for folders that match con-
troller names. Inside each folder, named for the par-
ent controller, are individual views that may or may
not match a controller action’s name.

 The ASP.NET MVC Framework will work hard to
locate a view to use for rendering. The framework will
search each registered view engine before giving up
with an exception. Out-of-the-box, ASP.NET MVC
comes with a single view engine, WebFormViewEngine.
This default view engine has several paths where views
can reside, and views can be named with either the
.aspx or .ascx extension. In listing 4.1, we see some of
the code from the ASP.NET MVC Framework itself
showing where the framework looks for views.

public WebFormViewEngine () {
 MasterLocationFormats = new[] {
 "~/Views/{1}/{0}.master",
 "~/Views/Shared/{0}.master"
 };

 ViewLocationFormats = new[] {

Listing 4.1 In the constructor of WebFormViewEngine, the default paths are set.

Figure 4.1 Default folder structure
demonstrating convention for
organizing views. The dots you see
next to each file are part of the
VisualSVN plugin. CodeCampServer
uses Subversion for source control.
 "~/Views/{1}/{0}.aspx",

68 CHAPTER 4 The view in depth

 "~/Views/{1}/{0}.ascx",
 "~/Views/Shared/{0}.aspx",
 "~/Views/Shared/{0}.ascx"
 };

 PartialViewLocationFormats = ViewLocationFormats;
}

If you need your view to live elsewhere, you can extend the framework to provide a
custom location. What happens if your view is not found? To demonstrate the answer,
I have defined a controller that returns a ViewResult, but I have purposely left out the
view. See how, in figure 4.2, the ASP.NET MVC Framework throws an exception listing
the specific places searched just to find that view.

 A view is an instance of the System.Web.Mvc.IView interface. You can see the defi-
nition of this interface in listing 4.2.

public interface IView {
 void Render(ViewContext viewContext, TextWriter writer);
}

The only type of view included with the MVC framework is System.Web.Mvc.WebForm-
View. This class leverages the Web Forms infrastructure to perform rendering. Let’s
examine the order of events that occur when a particular view is rendered.

Listing 4.2 The IView interface has a single Render operation.

Figure 4.2 When looking for a view, the framework searches four paths before
giving up.

69Overview of view basics

1 The ViewResult returned from an action method executes.
2 The ViewResult uses the ViewEngineCollection to find the view.
3 The ViewEngineCollection gives each registered IViewEngine a chance to

resolve the view. The order is determined by the order of the view engines
within the collection.

4 The ViewResult creates a ViewContext using the ControllerContext, view
name, ViewData, and TempData.

5 The ViewResult calls Render() on the IView passing in the ViewContext and
the response stream.

6 If the IView instance derives from WebFormView, the following steps occur.
7 The WebFormView uses IBuildManager to create a ViewPage or ViewUser-

Control from a virtual path.
8 The WebFormView sets the MasterLocation on the ViewPage, sets the ViewData

and calls RenderView() passing in the ViewContext.
9 The ViewPage stores the ViewContext, initializes HtmlHelper, AjaxHelper, and

UrlHelper, then delegates to base.ProcessRequest(), with which you are
already familiar because it is the primary method on IHttpHandler.

From the time an action method returns a ViewResult to the time the existing
response pipeline executes, you, as the developer, have several places to customize the
behavior of the rendering process. The following interfaces are extensibility points
where you can insert your own logic and alter the default behavior once an action
method has returned:

■ IView
■ IViewDataContainer
■ IViewEngine
■ IViewLocationCache

A widely used extension point is IViewEngine because that is the extension point
required to integrate other view engines like NVelocity, Brail, or Spark. It is also quite
easy to derive a class from WebFormViewEngine and merely override the FileExists()
method or CreateView() method. Refer to chapter 6 for more information about
view engines.

4.3 Overview of view basics
As we said before, views are responsible for rendering objects for consumption by a
user. Decision logic should be limited, if not eliminated from views in order to ensure
maintainability; we’ll focus on how views are organized and leveraged to render a
screen. We’ll assume decision logic is retained in the controller, domain objects, and
supporting presentation objects.

 At first glance, it may seem that the view is not doing much, and that is correct. Inten-
tionally, a view’s responsibility should be limited. Inherently, views are more brittle than

http://automapper.codeplex.com/
http://automapper.codeplex.com/
http://www.castleproject.org/

70 CHAPTER 4 The view in depth

other types of code because to verify the correctness of a view, one has to run the appli-
cation and physically look at the screen to ensure it is correct. Even with automated
tools like Selenium and Wati(r/N), you often have to wait because these types of tests
take a long time to run (measured in seconds, not milliseconds). There are ways to
independently test views, but we have found the return on the large investment to be
less than ideal. Our approach to views is to limit decision logic by factoring any neces-
sary logic out into other objects. The views become simple HTML markup with variable
tokens. When working with views, the basic topics include view engines, master pages,
ViewData, and partials. We’ll begin with view engines.

4.3.1 Examining the IViewEngine abstraction

System.Web.Mvc.IViewEngine is the interface responsible for locating a view or a par-
tial view. The full definition is in listing 4.3.

public interface IViewEngine {
 ViewEngineResult FindPartialView(ControllerContext controllerContext,
 string partialViewName, bool useCache);
 ViewEngineResult FindView(ControllerContext controllerContext,
 string viewName, string masterName, bool useCache);
 void ReleaseView(ControllerContext controllerContext, IView view);
}

Regardless of whether a view or a partial is found, each method returns a View-
EngineResult, which contains the IView instance as well as an IEnumerable<string>
that contains the paths searched in order to locate the view. This interface is all that is
necessary to

■ Change the default directory where views live
■ Change the default names of views
■ Amend the searched locations
■ Add a new file extension for valid views
■ Adapt a third-party view engine

The ASP.NET MVC Framework provides one view engine right out of the box, Web-
FormViewEngine. This is the view engine supported by the file templates registered
with Visual Studio and works with .aspx and .ascx views. We can expect most of the
market to stick with this view engine because it is familiar and supported by tools such
as Visual Studio and JetBrains ReSharper. When you want to leverage an alternate
view engine, register the second view engine in an HTTP Module or in the
Global.asax.cs file as shown in listing 4.4.

protected void Application_Start()
{

Listing 4.3 IViewEngine defines the contract used to locate views and partials.

Listing 4.4 Registering our view engine in Global.asax.cs

http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.Collections.Generic.IEnumerable%3c%3e
http://www.aisto.com/roeder/dotnet/Default.aspx?Target=code://mscorlib:2.0.0.0:b77a5c561934e089/System.String

71Overview of view basics

 RegisterRoutes(RouteTable.Routes);
 ViewEngines.Engines.Add(new MyViewEngine());
}

public class MyViewEngine : IViewEngine
{
 public ViewEngineResult FindPartialView(ControllerContext
 controllerContext, string partialViewName, bool useCache)
 {
 return new ViewEngineResult (new string[0]);
 }

 public ViewEngineResult FindView(ControllerContext controllerContext,
 string viewName, string masterName, bool useCache)
 {
 return new ViewEngineResult (new string[0]);
 }

 public void ReleaseView(ControllerContext controllerContext,
 IView view)
 {

 }
}

We have created a naïve implementation of IViewEngine for the purposes of this
example. In the Global.asax.cs file, we use one line of code to add this new view
engine to the collection B. When the view name cannot be found by the WebForm-
ViewEngine, MyViewEngine will get a chance to find the view. Now that we understand
the mechanics of locating and invoking a view, let’s explore master pages.

4.3.2 Understanding master pages in the ASP.NET MVC Framework

Layout is a fundamental element of screen design. A layout is known as a master page
in ASP.NET, but the term precedes master pages. ASP.NET MVC carries master pages
forward as one way to componentize the view necessary for a single screen. Just as with
Web Forms, view master pages can be nested. In fact, System.Web.Mvc.ViewMaster-
Page derives from System.Web.UI.MasterPage; it has all the same capabilities. When
using ASP.NET MVC, you use master pages in a manner similar to Web Forms. You
specify the screen frame with specific sections marked as placeholders for content spe-
cific to the screen. Web applications typically have a common page border and color
scheme. The master page is the perfect place to put the common elements as well as
style sheets and site-wide JavaScript libraries such as jQuery. Figure 4.3 shows the por-
tion of the screen that is specific to the page shown. The area not shadowed is ren-
dered from the master page.

 A view engine is in complete control of handling master pages: view engine han-
dles. A view engine could allow only a single master page, but the IViewEngine inter-
face allows a view engine to support many, each named with a string name. For
instance, the FindView method accepts masterName as an argument. With this key, the
view engine can locate a master page. Although it is possible to mix views within an

B

Find a partial view

Find a view

No need to implement
ReleaseView

72 CHAPTER 4 The view in depth

application, and even to mix views on a single page with different partial views from
different view engines, the master page chosen must be of the same view engine as the
view to be found and rendered. Although a single screen could have a master page of
SiteLayout, with a view of Edit, and partials of First and Second, the partials can be
of any type of view, but the SiteLayout and Edit must be from the same view engine.
Remember: if you are transitioning to a different view engine, you can use two master
pages, but you will have to duplicate the markup so that during the transition you
have the same master page coded in both view engine formats.

 Because the WebFormViewEngine leverages master pages from Web Forms, the
experience should be familiar to current ASP.NET developers. The difference is that
view master pages have no postback capabilities or server-side form posting. They
should be used for common markup for screen borders and navigation. Each .aspx
view can declare a master page directly, or the controller action can specify it. If the
view specifies a master page, but the controller action also specifies one, the action
wins, and the view’s selection is overridden. This is behavior specific to the
WebFormViewEngine. Each view engine is free to implement arbitrary rules on prece-
dence or requirements.

 Listing 4.5 is a simple master page, and we see it rendering objects in ViewData the
same way as with a regular view. All markup is the same. The only difference is that we
use the ContentPlaceHolder control to designate where the view should be placed. In
a master page, you can use any of the normal or custom view helpers you may have at
your disposal.

Figure 4.3 The master page represents the area around the shadowed section.

73Overview of view basics

<%@ Master Language="C#" AutoEventWireup="true"
Inherits="System.Web.Mvc.ViewMasterPage" %>

<%@ Import Namespace="System.Web.Mvc.Html"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"
 />
 <title><%= Html.Encode(ViewData ["Title"])%></title>
 <link href="../../Content/Site.css" rel="stylesheet" type="text/css" />
</head>

<body>
 <div class="page">
 <div id="header">
 <div id="title">
 <h1>My Second Sample MVC Application</h1>
 </div>

 <div id="menucontainer">

 <ul id="menu">
 <%=Html.ActionLink("Home", "Index", "Home")%>
 <%=Html.ActionLink("About Us","About","Home")%>

 </div>
 </div>

 <div id="main">
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />

 <div id="footer">
 My Sample MVC Application © Copyright 2008
 </div>
 </div>
 </div>
</body>
</html>

To help you understand how views are selected and how you can modularize them,
we’ll explore the common object structure that all views use to get objects to render.

4.3.3 Using ViewData to send objects to a view

ViewData is the bag of state (sometimes referred to as a property bag) that is passed to a
view. A view should get all the information it needs from ViewData, which is imple-
mented as a dictionary. It contains key/value pairs as well as some special properties,
like Model. The controller is responsible for filling the ViewData dictionary with
objects, but action filters can add to the dictionary as well. In fact, ViewData is a prop-
erty on System.Web.Mvc.ControllerBase, so anywhere you can access the controller

Listing 4.5 A layout using WebFormViewEngine

74 CHAPTER 4 The view in depth

you can access ViewData. As the view is executing, it pulls objects from ViewData dur-
ing the rendering process.

 In chapter 1, you saw a simple use of ViewData, so we won’t repeat that here. In any
nontrivial application, your view will be composed of a master page, a main view, and
many partials—possibly nested partials. It will help to know how ViewData is seg-
mented among the views. For instance, it is important to consider a partial view that
might be used by several other views. If the partial view needs an object in ViewData,
whose responsibility is it to put the object into the dictionary? The following is an
example that illustrates just what happens in this complex scenario. Examine the
source of the controller in listing 4.6, the Index.aspx view in listing 4.7, Partial.aspx in
listing 4.8 and NestedPartial.aspx in listing 4.9.

using System.Web.Mvc;

namespace ViewSamples.Controllers
{
 public class ViewDataController : Controller
 {
 public ActionResult Index()
 {
 ViewData.Add("one", "onevalue");
 ViewData.Add("two", "twovalue");
 ViewData.Add("three", "threevalue");
 return View(3);
 }
 }
}

<%@ Page Language="C#" AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<object>" %>
<%@ Import Namespace="System.Web.Mvc.Html"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title></title>
</head>
<body>
 <div>
 This view: <%=GetType().Name %>
 Model: <%=ViewData.Model %>

 Model Type: <%=ViewData.Model.GetType().Name %>
 ViewDataDictionary hashcode: <%=ViewData.GetHashCode()%>

 <%foreach (KeyValuePair<string, object> pair in ViewData){%>
 View data <%=pair.Key%> : <%=pair.Value %>

 <% } %>

Listing 4.6 The controller puts objects into ViewData.

Listing 4.7 Accessing ViewData from the view

Add objects
to ViewData

Render default
view with model

75Overview of view basics

 <hr />
 PARTIAL
 <%Html.RenderPartial("partial"); %>

 <hr />
 NESTED PARTIAL PASSING IN MODEL
 <%Html.RenderPartial("nestedpartial", 89); %>

 <hr />
 NESTED PARTIAL PASSING IN MODEL AND VIEWDATA
 <%Html.RenderPartial("nestedpartial", 89,
 new ViewDataDictionary {{"first", "1"} , {"second", "2"}}); %>

 <hr />
 NESTED PARTIAL PASSING IN VIEWDATA
 <%
 var dictionary = new ViewDataDictionary {{"first", "value"}};
 dictionary.Model = 100;
 Html.RenderPartial("nestedpartial", dictionary);
 %>
 </div>
</body>
</html>

<%@ Page Language="C#" AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<object>" %>
<%@ Import Namespace="System.Web.Mvc.Html"%>
<div style="border:solid 5px Lime">
 This view: <%=GetType().Name %>
 Model: <%=ViewData.Model %>

 Model Type: <%=ViewData.Model.GetType().Name %>
 ViewDataDictionary hashcode: <%=ViewData.GetHashCode() %>

 <%foreach (KeyValuePair<string, object> pair in ViewData){%>
 View data <%=pair.Key%> : <%=pair.Value %>

 <% } %>
 <hr />
 <%Html.RenderPartial("nestedpartial"); %>
</div>

<%@ Page Language="C#" AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<object>" %>
<div style="border:solid 5px Red">
 This view: <%=GetType().Name %>
 Model: <%=ViewData.Model %>

 Model Type: <%=ViewData.Model.GetType().Name %>
 ViewDataDictionary hashcode: <%=ViewData.GetHashCode() %>

 <%foreach (KeyValuePair<string, object> pair in ViewData){%>
 View data <%=pair.Key%> : <%=pair.Value %>

 <% } %>

Listing 4.8 Partial.aspx is loaded as a partial and loads a partial itself.

Listing 4.9 NestedPartial.aspx is loaded two views deep.
</div>

76 CHAPTER 4 The view in depth

Notice the values that are added in the controller in listing 4.6. We have three key/value
pairs and an object set to the Model property (by virtue of passing in “3” to the View
method). It is important to know that when a view renders a partial, the partial will get
the same ViewData objects; anything passed from the controller will also make it to any
partial and any master page (not shown here). This is because ViewData is a member
of ControllerBase, and ControllerBase is part of System.Web.Mvc.Controller-
Context. System.Web.Mvc.ViewContext derives from ControllerContext, so it has
everything ControllerContext has and more.

 We also see in listing 4.7 that while rendering a partial, a view can decide to over-
ride the ViewData passed into the partial. Even though each view will have access to
the same objects in the ViewData dictionary, the instance of ViewDataDictionary is
different for each one. Multiple views do not share instances of ViewDataDictionary.
We cannot expect to use ViewData as a mechanism for a partial to pass an object back
to the parent view. In fact, views should be isolated and should not try to communicate
with one another.

 Views are functional, and once they begin rendering, they should expect to have
all the information necessary to complete rendering. Note the hash code values
printed with the data when rendering /viewdata/index in a browser. The output is
shown in figure 4.4. We see that the hash code values are different, even for the multi-
ple instances of the nested partial view. Shared state and global variables can cause
maintainability problems; each view receives a fresh instance of ViewData to avoid
these issues.

 You can see from figure 4.4 that ViewData is the central object that is passed to a
view. A view relies completely on ViewData to get the information it needs to render.
The view can choose to pass on all or some of the same objects to partial views, and
the master page has access to the ViewData values as well. For proper segmentation,
each view/master page/partial gets its own instance of ViewData even if the contents
are identical. Partial views can be used to segment complex views into isolated sections
that can be reused within multiple views. You should take special note of partials.

4.3.4 Partial views can help decompose a complex screen

In section 4.3.3, you saw a demonstration of nested views, but there is much more to
know about partial views. First, a view is not partial based on its file extension. You can
have partial views with either the .aspx or .ascx extension. The view engine does not
care, and the view will render in the same fashion. What makes a view partial is how it
is used. There are infinite uses for partial views. Conceptually, you could break your
site into pieces and have each partial handle a section of your site. I will leave the
exact layout up to you, but there are plenty of ways to determine which partial to ren-
der, and you can even choose what class makes the decision about what partial to use.
You have already seen the scenario in which the view makes the decision about which
partial to render. The following example puts the controller in control. Please exam-
ine listing 4.10 where the controller decides which partial to use by putting a View-
Result into ViewData.

77Overview of view basics

using System.Web.Mvc;

namespace ViewSamples.Controllers
{

Listing 4.10 RenderViewController puts a pointer to a partial view into viewdata.

Figure 4.4 Each view and partial view receives a fresh instance of ViewData.
 public class RenderViewController : Controller

78 CHAPTER 4 The view in depth

 {
 public ViewResult Index()
 {
 ViewResult partialResult = View("next");
 return View(partialResult);
 }
 }
}

In listing 4.10 the controller is deciding which partial view to use. The controller
passes a ViewResult to the view inside the ViewData’s Model property B. The view, in
listing 4.11, is a strongly typed view expecting a ViewResult, and it executes the View-
Result passing in the ViewContext. Although this is a contrived example, it shows
that there is flexibility in who makes the decision about which partial view to use. Most
often, a view will decide which partial view to use because the responsibility for ren-
dering belongs to the view, not the controller. In cases where data or user input
changes a section of the screen, it may be appropriate for the controller to handle the
logic and decide. As with everything in software, it depends on your application.

 Listing 4.11 shows a view that renders any view passed to it.

<%@ Page Language="C#" AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<ViewResult>" %>
<%@ Import Namespace="System.Web.Mvc"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title></title>
</head>
<body>
 <div>
 <%=GetType().Name %>

 <% ViewData.Model.ExecuteResult(ViewContext); %>
 </div>
</body>
</html>

Listing 4.12 shows the simple partial view that outputs the type name. In figure 4.5,
the output of the rendered page shows that both of these views rendered in the cor-
rect order. If the controller had decided to pass a different partial, this output would
be different.

<%@ Page Language="C#" AutoEventWireup="true"
 Inherits="System.Web.Mvc.ViewPage<object>" %>
<div>
 <%=GetType().Name %>

</div>

Listing 4.11 Index.aspx is a view that renders any partial passed to it.

Listing 4.12 Next.aspx is a simple partial view.

B

79Leveraging the view to create dynamic screens

ViewData, views, master pages, ViewEngines, and partials are all important concepts in
the view story of the ASP.NET MVC Framework. Now that we have covered the basics,
the next section will explore view helpers, which are the building blocks of dynamic
views developed with ASP.NET MVC.

4.4 Leveraging the view to create dynamic screens
We have already seen how controllers, views, and our model objects fit in, but there is
more to formatting objects into HTML, posting forms, and creating dynamic web
pages. Getting the objects to the view seems easy, but what is the best way to transform
those objects into HTML? We could certainly build all HTML by hand, but we would
end up with much of the markup being duplicated. View helpers take similar markup
and handle the generation for us given a part of the view model. Form posting with
model binding and validation make accepting user input a snap. This section explores
all these topics.

 In chapter 2, we saw how to use a domain model and even a presentation model.
We saw how in some cases it works well to pass domain objects to the view, but in non-
trivial applications, it becomes necessary to put a translation mechanism between our
domain model and our UI toolkit. In smart client applications, we rely on the stateful-
ness of the platform, and we want our domain model to be active at all times so that
we can send events to it and consume quick responses. In a stateless application, we
need to take care that our domain model does not become corrupted by the stateless
paradigm of the web. The domain model does not need to know that it is living within
a web application, a smart client, an autonomous process, or a test harness.

 In the following examples, we’ll keep the concerns separate and map from the
domain model to the view model and back. This simulates real-world scenarios in
enterprise applications.

4.4.1 Rendering forms with view helpers and data binding

The ASP.NET MVC Framework does not emphasize web controls as heavily as Web
Forms. The concept is altogether different, and that concept is the view helper. There

Figure 4.5 The output shows that the correct partial was rendered to the screen.
are numerous types of view helpers:

80 CHAPTER 4 The view in depth

■ System.Web.Mvc.HtmlHelper<T> —Used to help render HTML input elements
– Html.TextBox()
– Html.CheckBox()
– Etc.

■ System.Web.Mvc.UrlHelper —Used to generate URLs
– Url.Action()
– Url.Content()
– Url.RouteUrl()
– Etc.

■ System.Web.Mvc.AjaxHelper<T> —Used to render links and form elements
used in an AJAX request
– Ajax.ActionLink()
– Ajax.BeginForm()
– Etc.

In this section, we concentrate on the HtmlHelper<T>. We are using strongly typed
views almost everywhere, and the ViewData.Model type flows all the way through the
helpers. Although we can use view helpers with any object, including our domain
model, we are focused here on leveraging them with our view model.

 When moving from complex objects to HTML and back, several things need to
happen, such as HTML encoding, null checking, and formatting as a string. We easily
think of HTML encoding because many of us have been bitten by HTML characters
making their way into data, but why null checking? In listing 4.13, we have a Confer-
ence object with a start date. Because this property is a nullable date, we could poten-
tially experience a NullReferenceException when we attempt to format it as a short
date string. This raises the question of who is responsible for checking values for null
and formatting as a string. Certainly the domain object is not responsible for this
because it does not care that we have a web front end at all. This is where the M in
MVC comes in: the model. No just any model, but the type of model that represents the
shape necessary for our presentation layer. We can call it presentation model, form
model, edit model, DTOs, view model, and so on, but these objects exist for the sole
purpose of working well with a view. As an aside, the term view model is gaining popu-
larity. In nontrivial applications, it is impractical to pass raw domain objects to views
because views often need a clean, projected view of the domain. Listing 4.13 shows
our sample domain object, the Conference.

using System;

namespace ViewSamples.Models
{
 public class Conference
 {
 public virtual int Id { get; set; }

Listing 4.13 The Conference object is abbreviated for this sample.

81Leveraging the view to create dynamic screens

 public virtual string Name { get; set; }
 public virtual string Description { get; set; }
 public virtual DateTime? StartDate { get; set; }
 public virtual DateTime? EndDate { get; set; }
 }
}

At first we might be tempted to pass this simple object straight to the view, but the Date-
Time? properties will cause problems. For instance, we need to choose a formatting for
them such as ToShortDateString() or ToString(). The view would be forced to do
null checking to keep the screen from blowing up when the properties are null. Views
are difficult to unit test, so we want to keep them as thin as possible. Because the output
of a view is a string passed to the response stream, we’ll only use objects that are string-
friendly; that is, objects that will never fail when ToString() is called on them. The
ConferenceForm view model object is an example of this. Notice in listing 4.14 that all
of the properties are strings. We’ll have the dates properly formatted before this view
model object is placed in view data. This way, the view need not consider the object, and
it can format the information properly.

namespace ViewSamples.Models
{
 public class ConferenceForm
 {
 public string Id { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public string StartDate { get; set; }
 public string EndDate { get; set; }
 }
}

We have an obvious gap now between our domain model Conference and the view
model ConferenceForm. The controller action could be the place to map from the
domain model to the view model, but our controller already has enough responsibility.
In listing 4.15, see how the ConferenceController delegates to a mapper for this spe-
cific purpose. The mapper is pretty simple code, and only the interface is listed here.

using ViewSamples.Models;

namespace ViewSamples.Services
{
 public interface IConferenceMapper
 {
 ConferenceForm Map(Conference conference);
 Conference Map(ConferenceForm form);
 }
}

Listing 4.14 View model has simple properties and is dedicated to a single view.

Listing 4.15 ConferenceController uses a view model to enable easy binding.
public class ConferenceController : Controller

82 CHAPTER 4 The view in depth

{
 private readonly IConferenceMapper _mapper;
 private readonly IConferenceRepository _repository;
 private readonly IConferenceFormValidator _validator;

 public ConferenceController(IConferenceMapper mapper,
 IConferenceRepository repository,
 IConferenceFormValidator validator)
 {
 _mapper = mapper;
 _validator = validator;
 _repository = repository;
 }

 public ViewResult Edit(int conferenceId)
 {
 Conference conference = _repository.GetById(conferenceId);

 ConferenceForm form = _mapper.Map(conference);

 return View(form);
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Edit(ConferenceForm form)
 {
 ModelStateDictionary dictionary = _validator.Validate(form);
 ModelState.Merge(dictionary);

 if (ModelState.IsValid)
 {
 Conference conference = _mapper.Map(form);

 _repository.Save(conference);
 return Redirect("/conference/current");
 }

 return View();
 }
}

Listing 4.16 contains the view that renders the input form. Notice how clean this view
is. There is no conditional logic, no date formatting— it’s clean. It is a strongly typed
view around ConferenceForm, so ViewData.Model is the type we expect. In fact, the
view helpers, such as the TextBox, will automatically bind from objects in ViewData.
Our view has no code that specifically places a value inside of a TextBox, as is neces-
sary when editing an existing conference.

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<ConferenceForm>" %>
<%@ Import Namespace="ViewSamples.Models"%>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
 runat="server">
 <h3><%=Html.ValidationSummary()%></h3>
 <p>

Listing 4.16 New.aspx view binds to the view model to allow data entry.

Map
ConferenceForm
to Conference

Merge validation
errors

Validate the form

Map from Conference
to ConferenceForm

Retrieve Conference
from store
 Create new conference

83Leveraging the view to create dynamic screens

 </p>
 <%using (Html.BeginForm()){%>
 <p>
 Name:<%=Html.TextBox ("Name")%>
 <%=Html.ValidationMessage("Name", "*")%>
 </p>
 <p>
 Description:<%=Html.TextBox ("Description")%>
 <%=Html.ValidationMessage("Description", "*")%>
 </p>
 <p>
 Start Date:<%=Html.TextBox ("StartDate")%>
 <%=Html.ValidationMessage("StartDate", "*")%>
 </p>
 <p>
 End Date:<%=Html.TextBox ("EndDate")%>
 <%=Html.ValidationMessage("EndDate", "*")%>
 </p>
 <input type="submit" value="Save" />
 <%}%>
</asp:Content>

In figure 4.6, we see the screen that displays when we navigate our browser to
/conference/edit?conferenceId=XXXX. The controller uses the repository and the
mapper to obtain a ConferenceForm view model object. Then the controller passes

Figure 4.6 The edit screen renders a form for editing the conference.

84 CHAPTER 4 The view in depth

the view model to the view, and the view renders an edit form with a TextBox for
each property.

 The framework knows how to bind directly from ViewData.Model to the HTML
text boxes on this view. The fact that the model passed to this strongly typed view con-
tained data was enough for the view helper to bind to the values. The built-in view
helpers will work hard to find a value suitable for rendering. The following is the
order in which the framework will look for values to bind to a view helper. The value
will be bound if

1 The name is found in ModelState
2 The name is found as an explicit key in ViewData
3 The name is found as a property of ViewData.Model
4 The name is an expression interpretable, such as Product.Name or Prod-

ucts[2].Name

Rendering a screen is one of the easiest things to do in the MVC framework, but how
do we post information back to the server so that our controller can save the confer-
ence? The next section tackles methods for taking this rendered form and posting it
back to the server so that we can save modified information back to our data store.

4.4.2 Posting HTML forms back to the server

A web application is only a website without the posting of information. Saving informa-
tion on the server makes the web interesting, and the ASP.NET MVC Framework delivers
a compelling experience. In the following example, you will see that you can save a new
conference without fishing around in the Request object or writing tedious mapping
code. In listing 4.16, you saw a view that contains a form that will post back to the “edit”
relative path. We used the Html.BeginForm() view helper to render the form tag, which
renders the following: <form action="/conference/edit" method="post">.

 With the form properly rendered, the page will post to the /conference/edit URL,
which is exactly what we want. In listing 4.17 we see the Edit action method that
receives the post. The single parameter this method receives is of type Conference-
Form. Because the properties of this object are types that have built-in type converters,
the ASP.NET MVC Framework is able to bind these properties without a custom IModel-
Binder instance being registered. Take special notice that the controller does not have
to dig into the form collection within the request object. If you have done ASP Classic
programming or even advanced Web Forms development, you are familiar with work-
ing with form posts. The ASP.NET MVC Framework nearly eliminates the need to access
Request.Form directly. Instead a form post can come in directly to an action method,
and that method can work with it as it does any other object. In this case, we map it
back to a Conference object, save it, and then redirect to another URL.

[AcceptVerbs(HttpVerbs.Post)]

Listing 4.17 The save action binds the request and handles it.

B

public ActionResult Edit(ConferenceForm form)

85Leveraging the view to create dynamic screens

{
 ModelStateDictionary dictionary = _validator.Validate(form);
 ModelState.Merge(dictionary);

 if (ModelState.IsValid)
 {
 Conference conference = _mapper.Map(form);
 _repository.Save(conference);
 return Redirect("/conference/current");
 }

 return View();
}

When using the same action name for a GET request as well as a POST request, we
have to use an ActionMethodSelectorAttribute such as the System.Web.Mvc.
AcceptVerbsAttribute B to limit a single URL request to a single action. Without
this attribute the controller class would not know which action method to select
when handling the URL, /controller/edit. At this point we see how simple it is to
craft a view with a form on it and post it back to the server. So far, we are only han-
dling the happy path. If anything went wrong, we don’t yet have the capability to
handle it. In any real business application, we need the capability to validate user
input and redirect the user back to the data entry form if something is left out or
submitted in an invalid state. The next section dives into the validation capabilities
included in ASP.NET MVC.

4.4.3 Validation and error reporting

The ASP.NET MVC Framework has a concept called ModelState which contains infor-
mation about those objects in ViewData that are not valid. On almost every data entry
screen, the user might enter data that is invalid for processing. In these cases, we want
to redirect the user back to the data entry screen to give him an opportunity to correct
the mistakes and try again. Let’s quickly fast-forward to a case where our system would
reject the saving of a conference. Our system needs to validate the user input and
report any errors that occur. I will intentionally post invalid data, and figure 4.7 shows
the resulting screen.

 The built-in view helpers will match the keys in the ModelStateDictionary with
the names of the form elements and tag them with a CSS class that calls attention to
them on the screen. The ASP.NET MVC Framework uses three CSS classes to report
form validation errors:

■ input-validation-error —On the <input> tag
■ field-validation-error —On the tag of Html.ValidationMessage()
■ validation-summary-errors —On the tag of the Html.Validation-

Summary()

At the top of the screen, we have a validation summary, and we have an individual
message that describes the problem. This validation summary will take any errors in
the ModelStateDictionary and format them as an unordered list. These errors can

86 CHAPTER 4 The view in depth

get into the ModelState dictionary in several places. In this case, our custom UI valida-
tor performed the validation and added a ModelState object to the dictionary. The
ASP.NET MVC Framework will also add an error to ModelState when it encounters an
error binding an action parameter. You are free to add errors inside the controller
action, in action filters and anywhere you have access to the controller object. In our
case, and in complex business applications, you want to keep validation away from
your controller because the business rules can become quite detailed. In fact, imple-
menting a small business rules engine quickly pays dividends in maintainability. List-
ing 4.18 shows our IConferenceFormValidator interface and the implementing class.

public interface IConferenceFormValidator
{
 ModelStateDictionary Validate(ConferenceForm form);
}

Listing 4.18 Validating the view model object posted from the form.

Figure 4.7 The screen reports an error as a result of the validation.
public class ConferenceFormValidator : IConferenceFormValidator

87Leveraging the view to create dynamic screens

{
 public ModelStateDictionary Validate(ConferenceForm form)
 {
 var dictionary = new ModelStateDictionary ();
 ValidateStartDate(form, dictionary);
 return dictionary;
 }

 private void ValidateStartDate(ConferenceForm form,
 ModelStateDictionary dictionary)
 {
 DateTime result;
 if (!DateTime.TryParse(form.StartDate, out result))
 {
 var state = new ModelState ();
 state.Value = new ValueProviderResult(form.StartDate,
 form.StartDate,
 CultureInfo.InvariantCulture);
 state.Errors.Add("Start Date is invalid.");

 dictionary.Add("StartDate", state);
 }
 }
}

Although we validate only one property, you will want to implement full validation to
check all the necessary properties. Even with a single property, validation can con-
sume twenty lines of code. Imagine how large this class would be if we had to validate
thirty fields! The need for a business rules engine comes on quickly.

 This view model and mapping implementation is just one way to do it. Another
excellent way to do binding is through an object mapper tool that specializes in map-
ping objects to objects. By following the conventions of the AutoMapper library,
found at http://automapper.codeplex.com/, you can reduce tedious mapping code.

NOTE The ASP.NET MVC Framework also provides support for System.Compo-
nentModel.IDataErrorInfo. If your view model implements this inter-
face, it can integrate seamlessly with IModelBinder and ModelState.
Unfortunately, this requires the view model to handle the validation. We
have seen the need to separate validation logic from the view model
itself; therefore, only consider implementing this interface on the most
trivial of ASP.NET MVC web applications.

Another great way to accomplish data entry validation is to use the validation classes
from the Castle Project (http://www.castleproject.org/) in the Castle.Components.
Validator namespace. The Castle validators have a complete array of attributes that
describe the validation to be performed. This leads to a declarative way to specify vali-
dation, and it removes the need for lots of imperative coding in each view model object.

 While reading through the example, you have probably wondered why each field
requires so much markup just for a label, input box, and validation message. The fol-
lowing section shows us how we can reduce the markup required in the form by

Check if start
date valid

Create
ModelState
entry

Add ModelState
entry
extending HtmlHelper.

http://automapper.codeplex.com/
http://www.castleproject.org/

88 CHAPTER 4 The view in depth

4.4.4 Extending HtmlHelper

If you have seen any presentations with the ASP.NET MVC Framework, you probably
have noticed the volume of string identifiers used in the views. With a bit of work we can
drastically reduce the amount required to render the same view while reducing the risk
of a typo causing a functional bug in one of our screens. The view in listing 4.19 uses a
custom view helper that we’ll explore shortly.

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<ConferenceForm>" %>
<%@ Import Namespace="ViewSamples.Views.Conference"%>
<%@ Import Namespace="ViewSamples.Models"%>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"
 runat="server">
 <h3><%=Html.ValidationSummary()%></h3>
 <p>
 Edit conference
 </p>
 <%using (Html.BeginForm()){%>
 <%=Html.Hidden(x=>x.Id) %>
 <p><%=Html.TextBox (x=>x.Name)%></p>
 <p><%=Html.TextBox (x=>x.Description)%></p>
 <p><%=Html.TextBox (x=>x.StartDate)%></p>
 <p><%=Html.TextBox (x=>x.EndDate)%></p>
 <input type="submit" value="Save" />
 <%}%>
</asp:Content>

Notice how little markup is required to render the same edit screen as we saw before.
By using .NET 3.5 LINQ Expressions and a strongly typed view, we can describe the
property we wish to display and bind without coupling to the name using a string lit-
eral. We leverage view model binding, specific error reporting, and seamless form post
binding all without string literals cluttering the view. Reducing the number of repeti-
tive string literals is a good idea, but you may be wondering what is necessary to use
this type of technique when creating a custom view helper.

 The HtmlHelper class itself does not contain any view helpers. You cannot render a
text box, a check box, or a button with the HtmlHelper class alone. All view helpers
are implemented as extension methods off of the HtmlHelper class in a class called
InputExtensions. The above example uses a custom view helper implemented as an
extension method. This custom view helper

■ Renders a label with the property text
■ Renders the textbox with the appropriate ID, name, and value
■ Renders a validation message span tag ready for form validation

The custom view helper is invoked by calling Html.TextBox (x=>x.Name) where
x.Name is a property of ConferenceForm. It is represented as a lambda expression,

Listing 4.19 By using a custom view helper, we can eliminate many string literals.

89Leveraging the view to create dynamic screens

which is part of the LINQ extensions in .NET 3.5. The code for this view helper is in
listing 4.20. This is advanced code, and it is not necessary for basic use of ASP.NET
MVC, but extensions like this are useful in applications with many, many screens.

using System;
using System.Linq.Expressions;
using System.Reflection;
using System.Web.Mvc;
using System.Web.Mvc.Html;

namespace ViewSamples.Views.Conference
{
 public static class HtmlHelperExtensions
 {
 public static string Hidden<T>(
 this HtmlHelper<T> helper, Expression<Func<T, object>> expr)
 where T : class
 {
 MemberInfo property = GetMemberInfo(expr);
 string propertyName = property.Name;
 Func<T, object> func = expr.Compile();

 object propertyValue = func.Invoke(helper.ViewData.Model);
 return helper.Hidden(propertyName, propertyValue);
 }

 public static string TextBox<T>(this HtmlHelper<T> helper,
 Expression<Func<T, object>> expr)
 where T : class
 {
 MemberInfo property = GetMemberInfo(expr);
 string propertyName = property.Name;
 Func<T, object> func = expr.Compile();

 object propertyValue = func.Invoke(helper.ViewData.Model);
 string textBoxString =
 helper.TextBox(propertyName, propertyValue);

 return string.Format(
 "<label for=\"{0}\">{1}: </label>{2} {3}",
 propertyName, propertyName, textBoxString,
 helper.ValidationMessage(expr));
 }

 public static string ValidationMessage<T>(
 this HtmlHelper<T> helper, Expression<Func<T, object>> expr)
 where T : class
 {
 MemberInfo property = GetMemberInfo(expr);
 string propertyName = property.Name;
 return helper.ValidationMessage(propertyName, "*");
 }

 public static MemberInfo GetMemberInfo<T>(

Listing 4.20 A custom view helper that enables easy view code

Get property
from expression

B

Get value from
view model

C

D

 Expression<Func<T, object>> expr)

90 CHAPTER 4 The view in depth

 {
 if (expr.Body.GetType() == typeof (UnaryExpression))
 return ((MemberExpression)
 (((UnaryExpression) expr.Body).Operand)).Member;

 return ((MemberExpression) expr.Body).Member;
 }

 }
}

Notice that the view helper reuses the TextBox view helper that already comes with
the ASP.NET MVC Framework C. This ensures that the built-in binding and error CSS
class labeling logic are also included when this view helper renders. You can see that
this view helper examines the expression passed in and uses the property name as the
name for the form elements B as well as the validation message if an error occurs D.
This automatically matches up keys, and when combined with the validation logic
shown in listing 4.17, no string literals are necessary anywhere. All keys are kept in
sync, and this makes for a trivial data entry programming task.

4.5 Summary
Views have changed significantly from early web technologies, through Web Forms
and now with ASP.NET MVC views. The most obvious change is that views have become
simpler. When realizing that a view should have the responsibility only for rendering,
we find that much logic can be factored out to other classes.

 In this chapter, we have seen how to create views of various types and work with lay-
outs and partial views. We have explored the intricacies of ViewData and the mechan-
ics of view engines and the sequence of events that happen when rendering a view.
Our deep dive into views concluded with a complex scenario with all the pieces com-
ing together to provide a complete data entry scenario that included binding, valida-
tion, error reporting, and a custom view helper that enabled the elimination of string
literals in the view. With the basics in place, we’ll now dive into routing, which is a
major topic itself. Up to this point, we have used the default route of {controller}/
{action}/{id}. Chapter 5 explores routing in greater detail.

Routing
Routing is all about the URL and how we use it as an external input to the applica-
tions that we build. The URL has led a short but troubled life and the HTTP URL is
currently being tragically misused by current web technologies. As the web began
to change from being a collection of hyperlinked static documents into dynami-
cally created pages and applications, the URL has been kidnapped by web technolo-
gies and undergone terrible changes. The URL is in trouble and as the web
becomes more dynamic we, as software developers, can rescue it to bring back the
simple, logical, readable, and beautiful resource locator that it was meant to be.

 Rescuing the URL means controlling those that control applications. Although
routing is not core to all implementations of the MVC pattern, it is often imple-
mented as a convenient way to add an extra level of separation between external

This chapter covers
■ Routing as a solution to URL issues
■ Designing a URL schema
■ Using routing in ASP.NET MVC
■ Route testing
■ Using routing in Web Forms applications
91

http://example.com/users/edit/5
http://example.com/users/edit/5

92 CHAPTER 5 Routing

inputs and the controllers and actions which make up an application. The code
required to implement routing using the ASP.NET MVC Framework is reasonably triv-
ial but the thought behind designing a schema of URLs for an application can raise
many issues. In this chapter, we’ll go over the concept of routes and their relationship
with MVC applications. We’ll also briefly cover how they apply to Web Forms projects.
We’ll examine how to design a URL schema for an application, and then apply the
concepts to create routes for Code Camp Server, our sample application. Because
routes are the front door of your web application, we’ll discover how to test routes to
ensure they are working as intended. Now that you have an idea of how important
routing is, we can start with the basics.

5.1 What are routes?
The history of the URL can be traced back to the very first web servers, where it was
primarily used to point directly to documents in a folder structure. This URL would
have been typical of an early URL and it’s reasonably well structured and descriptive:

http://example.com/plants/roses.html

It seems to be pointing to information on roses and the domain also seems to have a
logical hierarchy. But hold on, what is that .html extension on the end of the URL?
This is where things started to go wrong for our friend the URL. Of course .html is a
file extension because the web server is mapping the path in the URL directly to a
folder of files on the disk of the web server. The category is being created by having a
folder called plants containing all documents about plants.

 The key thing here is that the file extension of .html is probably redundant in this
context, as the content type is being specified by the Content-Type header returned
as part of the HTTP response. An example HTTP header is shown in listing 5.1.

C:\> curl -I http://example.com/index.html

HTTP/1.1 200 OK
Date: Thu, 10 Jan 2008 09:03:29 GMT
Server: Apache/2.2.3 (CentOS)
Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT
ETag: "280100-1b6-80bfd280"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8

5.1.1 What’s that curl command?

The curl command shown in listing 5.1 is a Unix command that allows you to issue an
HTTP GET request for a URL and return the output. The –I switch tells it to display the
HTTP response headers. This and other Unix commands are available on Windows via
the Cygwin shell for Windows (http://cygwin.com).

Listing 5.1 HTTP headers returned for a .html file

http://example.com/users/edit/5
http://example.com/users/edit/5
http://cygwin.com

93What are routes?

 The response returned contained a Content-Type header set to text/html;
charset=UTF8, which specifies both a MIME type for the content and the character
encoding. The file extension has no meaning in this situation.

Mapping the path part of a URL directly to a disk folder is at the root of the problems
that we face today. As dynamic web technologies have developed, .html files that con-
tain information changed to be .aspx files containing source code. Suddenly the URL
is not pointing to a document but to source code which fetches information from a
database, and the filename must be generic as one source file can fetch any informa-
tion it wants: what a mess!

 Consider the following URL:

http://microsoft.com/downloads/details.aspx?FamilyID=9ae91ebe-3385-447c-8a30-

➥ 081805b2f90b&displaylang=en

The file path is /download/details.aspx, which is a reasonable attempt to be descrip-
tive with the source code name, but as it’s a generic page which fetches the actual
download details from a database, the file name can’t possibly contain the important
information that the URL should contain. Even worse, an unreadable GUID is used to
identify the actual download and at this point the URL has lost all meaning.

 This is a perfect opportunity to create a beautiful URL. Decouple the source code
file name from the URL and it can become a resource locator again with the resource
being a download package for Internet Explorer. The user never needs to know that
this resource is served by a page called details.aspx. The result would look like this:

http://microsoft.com/downloads/windows-internet-explorer-7-for-windows-xp-sp2

This is clearly an improvement but we are making an assumption that the description
of the item is unique. Ideally, in the design of an application, we could make some
human-readable information like the title or description unique to support the URL
schema. If this were not possible, we could implement another technique to end up
with something like the following URL:

http://microsoft.com/downloads/windows-internet-explorer-7-for-windows-xp-

➥ sp2/1987429874

File extensions are not all bad!
Reading this chapter so far, you might think that all file extensions are bad, but this
is not the case. Knowing when information would be useful to the user is key to un-
derstanding when to use a file extension. Is it useful for the user to know that HTML
has been generated from an .aspx source file? No, the MIME type is sufficient to in-
fluence how that content is displayed, so no extension should be shown. However, if
a Word document is being served it would be good practice to include a .doc exten-
sion in addition to setting the correct MIME type, as that will be useful when the file
is downloaded to the user’s PC.

94 CHAPTER 5 Routing

In this final example, both a description of the download and a unique identifier are
used. When the application comes to process this URL, the description can be ignored
and the download looked up on the unique identifier. You might want to enforce
agreement between the two segments for search engine optimization. Having multi-
ple URLs pointing to the same logical resource yields poor results for search engines.
Let’s see how we can apply these ideas to create better URLs.

5.1.2 Taking back control of the URL with routing

For years, the server platform has dictated portions of the URL, such as the .aspx at the
end. This problem has been around since the beginning of the dynamic web and
affects almost all current web technologies, so you should not be surprised that many
solutions to the problem have been developed. Although ASP.NET does offer options
for URL rewriting,1 many ASP.NET developers ignore them. URL rewriting is discussed
again in chapter 10.

 Many web technologies such as PHP and Perl, hosted on the Apache web server,
solve this problem by using mod_rewrite.2 Python and Ruby developers have taken
to the MVC frameworks and both Django and Rails have their own sophisticated
routing mechanisms.

 A routing system in any MVC framework manages the decoupling of the URL from
the application logic. It must manage this in both directions so that it can

■ Map URLs to a controller/action and any additional parameters
■ Construct URLs which match the URL schema from a controller, action, and

additional parameters

This is more commonly referred to as inbound routing (figure 5.1) and outbound routing
(figure 5.2). Inbound routing describes the URL invocation of a controller action; out-
bound routing describes the frame-
work generating URLs for links and
other elements on your site.

 When the routing system per-
forms both of these tasks, the URL
schema can be truly independent
of the application logic. As long as
it’s never bypassed when construct-
ing links in a view, the URL schema
should be trivial to change inde-
pendent of the application logic.
Now let’s take a look at how to
build a meaningful URL schema for
our application.

1 URL Rewriting in ASP.NET—http://msdn2.microsoft.com/en-us/library/ms972974.aspx

HTTP Request
Routing

Action

Controller

View Routing{ controller: foo
action: bar }

http://some/url

Figure 5.1 Inbound routing refers to taking an HTTP
request (a URL) and mapping it to a controller and
action.

Figure 5.2 Outbound routing generates appropriate
URLs from a given set of route data (usually controller
and action).
2 Apache Module mod_rewrite—http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

../../Downloads/in
../../Downloads/in
http://msdn2.microsoft.com/en-us/library/ms972974.aspx
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

95Designing a URL schema

5.2 Designing a URL schema
As a professional developer, you would not start coding a new project before mapping
out what the application will do and how it will look. The same should apply for the
URL schema of an application. Although it’s hard to provide a definitive guide on
designing URL schema (every website and application is different) we’ll discuss gen-
eral guidelines with an example or two thrown in along the way.

 Here is a list of simple guidelines:

■ Make simple, clean URLs.
■ Make hackable URLs.
■ Allow URL parameters to clash.
■ Keep URLs short.
■ Avoid exposing database IDs wherever possible.
■ Consider adding unnecessary information.

These guidelines will not all apply to every application you create. You should run
through a process similar to this before deciding on your final application URL schema.

5.2.1 Make simple, clean URLs

When designing a URL schema, the most important thing to remember is that you
should step back from your application and consider it from the point of view of your
end user. Ignore the technical architecture you will need to implement the URLs.
Remember that by using routing, your URLs can be completely decoupled from your
underlying implementation. The simpler and cleaner a permalink is, the more usable
a site becomes.

Let’s take the example of our events management sample application. In a Web Forms
world we might have ended up with a URL something like this:

http://example.com/eventmanagement/events_by_month.aspx?year=2008&month=4

Using a routing system it’s possible to create a cleaner URL like this:

http://example.com/events/2008/04

This gives us the advantage of having an unambiguous hierarchical format for the date
in the URL, which raises an interesting point. What would happen if we omitted that 04

Permalinks and deep linking
Over the past few years permalinks have gained popularity, and it’s important to con-
sider them when designing a URL schema. A permalink is simply an unchanging direct
link to a resource within a website or application. For example, on a blog the URL to
an individual post would usually be a permalink such as http://example.com/
blog/post-1/hello-world.
in the URL? What would you (as a user) expect? This is described as hacking the URL.

http://code.google.com/p/mvccontrib/source/browse/trunk/src/MvcContrib.TestHelper/MvcContrib.TestHelper/Extensions/RouteTestingExtensions.cs
http://code.google.com/p/mvccontrib/source/browse/trunk/src/MvcContrib.TestHelper/MvcContrib.TestHelper/Extensions/RouteTestingExtensions.cs
http://code.google.com/p/mvccontrib/source/browse/trunk/src/MvcContrib.TestHelper/MvcContrib.TestHelper/Extensions/RouteTestingExtensions.cs

96 CHAPTER 5 Routing

5.2.2 Make hackable URLs

When designing a URL schema, it’s worth considering how a URL could be manipu-
lated or “hacked” by the end user in order to change the data displayed. In the follow-
ing example URL, it might reasonably be assumed that removing the parameter 04
from the URL might present all events occurring in 2008.

http://example.com/events/2008

By the same logic this could be expanded into the more comprehensive list of routes
shown in table 5.1.

Being this flexible with your URL schema is great but it can lead to having an enor-
mous number of potential URLs in your application. When you build your application
views you should always give appropriate navigation; remember it may not be neces-
sary to include a link to every possible URL combination on every page. It’s all right
for some things to be a happy surprise when a user tries to hack a URL and for it
to work!

The ability to hack URLs gives power back to the users. With dates this is very easy to
express, but what about linking to named resources?

5.2.3 Allow URL parameters to clash

Let’s expand the routes and allow events to be listed by category. The most usable URL
from the user’s point of view would probably be something like this:

http://example.com/events/meeting

Table 5.1 Partial URL schema for the events management application

URL Description

http://example.com/events Displays all events

http://example.com/events/<year> Displays all events in a specific year

http://example.com/events/<year>/<month> Displays all events in a specific month

http://example.com/events/<year>/<month>/<date> Displays all events on a specific single day

Slash or dash ?
It’s a general convention that if a slash is used to separate parameters, the URL
should be valid if parameters are omitted. If the URL /events/2008/04/01/ is
presented to users, they could reasonably assume that removing the last “day”
parameter could increase the scope of the data shown by the URL. If this is not
what is desired in your URL schema, consider using dashes instead of slashes as
/events/2008-04-01/ would not suggest the same hackability.

97Designing a URL schema

But now we have a problem! We already have a route that matches /events/
<something> used to list the events on a particular year, month, or day and how are
we now going to try to use /events/<something> to match a category as well? Our
second route segment can now mean something entirely different; it clashes with the
existing route. If the routing system is given this URL, should it treat that parameter
as a category or a date? Luckily, the routing system in ASP.NET MVC allows us to
apply conditions. The syntax for this can be seen in section 5.3.3 but for now it’s suf-
ficient to say that we can use regular expressions to make sure that routes only
match certain patterns for a parameter. This means that we could have a single route
that allows a request like /events/2009-01-01 to be passed to an action that shows
events by date and a request like /events/asp-net-mvc-in-action to be passed to
an action that shows events by category. These URLs should “clash” with each other
but they don’t because we have made them distinct based on what characters will be
contained in the URL.

 This starts to restrict our model design, however. It will now be necessary to con-
strain event categories so that category names made entirely of numbers are not
allowed. You’ll have to decide if in your application this is a reasonable concession to
make for such a clean URL schema.

 The next principle we’ll learn about is URL size. For URLs, size matters, and
smaller is better.

5.2.4 Keep URLs short

Permalinks are passed around millions of times every day through email, instant mes-
senger, micromessaging services such as SMS and Twitter, and even in conversation.
Obviously for a URL to be spoken (and subsequently remembered!), it must be sim-
ple, short, and clean. Even when transmitting a permalink electronically this is impor-
tant, as many URLs are broken due to line breaks in emails.

 Short URLs are nice; however you shouldn’t sacrifice readability for the sake of
brevity. Remember that when a link to your application is shared, it’s probably going
to have only the limited context provided by whoever is sharing it. By having a clear,
meaningful URL that is still succinct you can provide additional context that may be
the difference between the link being ignored or clicked.

 The next guideline is both the most useful in terms of maintaining clarity, and the
most violated, thanks to the default routes in the ASP.NET MVC Framework.

5.2.5 Avoid exposing database IDs wherever possible

When designing the permalink to an individual event, the key requirement is that the
URL should uniquely identify the event. We obviously already have a unique identifier
for every object that comes out of a database in the form of a primary key. This is usu-
ally some sort of integer, autonumbered from 1, so it might seem obvious that the URL
schema should include the database ID.
http://example.com/events/87

98 CHAPTER 5 Routing

Unfortunately, the number 87 means nothing to anyone except the database adminis-
trator, and wherever possible you should avoid using database-generated IDs in URLs.
This doesn’t mean you cannot use integer values in a URL where relevant, but try to
make them meaningful.

 In the Conference model of Code Camp Server, there are two possible properties
which are suitable for the permalink identifier that are not database generated: Name
and Key. Name could be made to be unique without too much trouble but will probably
include spaces, apostrophes, or other punctuation, so Key seems like a more logical
choice as a short unique text string for an event.

http://example.com/events/houstonTechFest2008

Sometimes creating a meaningful identifier for a model adds benefits only for the
URL and has no value apart from that. In cases like this, you should ask yourself if hav-
ing a clean permalink is important enough to justify additional complexity not only
on the technical implementation of the model, but also in the UI, as you will usually
have to ask a user to supply a meaningful identifier for the resource.

 This is a great technique, but what if you don’t have a nice unique name for the
resource? What if you need to allow duplicate names and the only unique identifier is
the database ID? This next trick will show you how to utilize both a unique identifier
and a textual description to create a URL that is both unique and readable.

5.2.6 Consider adding unnecessary information

If you must use a database ID in a URL, consider adding additional information which
has no purpose other than to make the URL readable. Look at the URL for a specific ses-
sion in our events application. The Title property is not necessarily going to be
unique, and it’s probably not practical to have people add a text identifier for a session.
If we add the word session just for readability, the URL might look something like

http://example.com/houstonTechFest2008/session-87

This isn’t good enough, though, as it gives no indication what the session is about;
let’s add another superfluous parameter to it. The addition has no purpose other
than description. It will not be used at all while processing the controller action. The
final URL could look like

http://example.com/houstonTechFest2008/session-87/an-introduction-to-mvc

Much more descriptive, and the session-87 parameter is still there so we can look up
the session by database ID. Of course we’d have to convert the session name to a more
URL-friendly format, but this would be trivial.

 The routing principles covered in this section will guide you through your choice
of URLs in your application. Decide on a URL schema before going live on a site, as
URLs are the entry point into your application. If you have links out there in the wild
and you change your URLs, you risk breaking these links and losing referral traffic
from other sites. You also lose any reputation for your URLs from the search engines.

99Implementing routes in ASP.NET MVC

Now that you’ve learned what kind of routes you’ll use, let’s create some with ASP.NET
MVC.

5.3 Implementing routes in ASP.NET MVC
When you first create a new ASP.NET MVC project, two default routes are created with
the project template (shown in listing 5.2). They are defined in Global.asax.cs.
These routes cover

■ An ignore route to take certain URLs out of the ASP.NET MVC pipeline
■ A generic dynamic route covering a standard /controller/action/id route

public class MvcApplication : HttpApplication
{
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",

 new { controller = "Home", action = "Index", id = "" }
);

 }

 protected void Application_Start()
 {
 RegisterRoutes(RouteTable.Routes);
 }

Listing 5.2 Default routes

Search engine optimization (SEO)
It’s worth mentioning the value of a well-designed URL when it comes to optimizing
your site for the search engines. It’s widely accepted that placing relevant keywords
in a URL has a direct effect on search engine ranking, so bear the following tips in
mind when you are designing your URL schema.

1. Use descriptive, simple, commonly used words for your controllers and actions.
Try to be as relevant as possible and use keywords which you would like to apply
to the page you are creating.

2. Replace all spaces (which are encoded to an ugly %20 in a URL) to dashes (-) when
including text parameters in a route.

3. Strip out all nonessential punctuation and unnecessary text from string parameters.

4. Where possible, include additional, meaningful information in the URL. Additional
information like titles and descriptions provide context and search terms to search
engines that can improve the site’s relevancy for search terms.

B

C
D

E

}

100 CHAPTER 5 Routing

In listing 5.2, the first operation is an IgnoreRoute B. We don’t want Trace.axd,
WebResource.axd, and other existing ASP.NET handlers routed through the MVC
framework, so the route {resource}.axd/{*pathInfo} ensures any request coming
in with an extension of .axd will not be served by ASP.NET MVC.

 The second operation defines our first route. Routes are defined by calling
MapRoute on a RouteCollection, which adds a Route object to the collection. So,

REST and RESTful architectures
A style of architecture called REST (or RESTful architecture) is a recent trend in web
development. REST stands for representational state transfer. The name may not be
very approachable, but the idea behind it absolutely is.

REST is based on the principle that every notable “thing” in an application should be
an addressable resource. Resources can be accessed via a single, common URI, and
a simple set of operations is available to those resources. This is where REST gets
interesting. Using lesser-known HTTP verbs like PUT and DELETE in addition to the
ubiquitous GET and POST, we can create an architecture where the URL points to the
resource (the “thing” in question) and the HTTP verb can signify the method (what to
do with the “thing”). For example, if we use the URI /speakers/5, with the verb GET,
this would show the speaker (in HTML if it were viewed in a web browser). Other op-
erations might be as shown in this chart:

REST isn’t useful just as an architecture for rendering web pages. It’s also a means
of creating reusable services. These same URLs can provide data for an AJAX call or
a completely separate application. In some ways, REST is a backlash against the
more complicated SOAP-based web services.

If you are coming from Ruby on Rails and are smitten with its built-in REST support,
you’ll be disappointed to find that ASP.NET MVC has no built-in support for REST.
However, due to the extensibility provided by the framework, it’s not difficult to
achieve a RESTful architecture. MvcContrib has an implementation called Sim-
plyRestful that contains a usable REST implementation. Look it up if you are interest-
ed in REST.

URL VERB ACTION

/sessions GET List all sessions

/sessions POST Add a new session

/sessions/5 GET Show session with id 5

/sessions/5 PUT Update session with id 5

/sessions/5 DELETE DELETE session with id 5

/sessions/5/comments GET List comments for session with id 5
what comprises a route? A route has a name C, a URL pattern D, default values E,

101Implementing routes in ASP.NET MVC

and constraints. The latter two are optional, but you will most likely use default values
in your routes. The route in listing 5.2 is named Default, has a URL pattern of {con-
troller}/{action}/{id}, and a default value dictionary that identifies the default
controller and action. These default values are specified in an anonymous type, which
is new in .NET 3.5.

 If we pick apart this route, we can easily see its components: the first segment of
the URL will be treated as the controller, the second segment as the action, and the third
segment as the id. Notice how these values are surrounded
in curly braces. When a URL comes in with the following
format, what do you think the values will be for controller,
action, and id?

http://example.com/users/edit/5

Figure 5.3 shows how the values are pulled out of the URL.
Remember, this is only the default route template. You are
free to change this for your own applications.

The route values, shown in table 5.2, are all strings. The controller will be extracted
out of this URL as users. The “Controller” part of the class name is implied by conven-
tion; thus the controller class created will be UsersController. As you can probably
already tell, routes are not case sensitive. The action describes the name of the
method to call on our controller. In ASP.NET MVC, an action is defined as a public
method on a controller that returns an ActionResult. By convention the framework
will attempt to find a method on the specified controller that matches the name sup-
plied for action. If none is found it will also look for a method that has the Action-
NameAttribute applied with the specified action. The remaining values defined in a
route are pumped into the action method as parameters, or left in the
Request.Params collection if no method parameters match.

 Notice that the id is also a string; however if your action parameter is defined as an
integer, a conversion will be done for you.

 Listing 5.3 shows the action method that will be invoked as a result of the URL in
figure 5.3.

public class UsersController : Controller

Name Value

Controller "users"

Action "edit"

Id "5"

Listing 5.3 An action method matching http://example.com/users/edit/5

http://example.com/users/edit/5

action

controller id

Figure 5.3 Decomposing a
URL into route values using
the default route of
{controller}/{action}/{id}

Table 5.2 The route values are
set to the values extracted from
the URL
{

102 CHAPTER 5 Routing

 public ActionResult Edit(int id)
 {
 return View();
 }
}

What happens if we omit the id or action from our URL? What will the URL http: /
/example.com/users match? To understand this we have to look at the route
defaults. In our basic route defined in listing 5.2, we can see that our defaults are
defined as

new { controller = "Home", action = "Index", id = "" }

This allows the value of “Index” to be assumed when the value for action is omitted in
a request that matches this route. You can assign a default value for any parameter in
your route.

 We can see that the default routes are designed to give a reasonable level of func-
tionality for an average application but in almost any real world application you want
to design and customize a new URL schema. In the next section we’ll design a URL
schema using custom static and dynamic routes.

5.3.1 URL schema for an online store

Now we are going to implement a route collection for a sample website. The site is a
simple store stocking widgets for sale. Since the routes for Code Camp Server are a bit
more complex, we’ll first examine a slightly simpler case and continue our examples
with Code Camp Server later in the chapter. Using the guidelines covered in this
chapter we have designed a URL schema shown in table 5.3.

There is a new kind of URL in there that we have not yet discussed. The URL in
route 4 is not designed to be seen by the user. It’s linked via form posts. After the
action has processed, it immediately redirects and the URL is never seen on the
address bar. In cases like this it is still important for the URL to be consistent with
the other routes defined in the application. How do we add a route?

Table 5.3 The URL schema for sample widget store

URL Description

1 http://example.com/ Home page, redirects to the widget catalog list

2 http://example.com/privacy Displays a static page containing site privacy policy

3 http://example.com/<widget code> Shows a product detail page for the relevant <widget code>

4 http://example.com/<widget code>/buy Adds the relevant widget to the shopping basket

5 http://example.com/basket Shows the current user’s shopping basket

6 http://example.com/checkout Starts the checkout process for the current user

103Implementing routes in ASP.NET MVC

5.3.2 Adding a custom static route

Finally it’s time to start implementing the routes that we have designed. We’ll tackle
the static routes first as shown in table 5.4. Route 1 in our schema is handled by our
route defaults, so we can leave that one exactly as is.

The first route that we’ll implement is number 2 which is a purely static route linking
http://example.com/privacy to the privacy action of the Help controller. Let’s look
at it in listing 5.4.

routes.MapRoute("privacy_policy", "privacy", new {controller = "Help", action

➥ = "Privacy"});

The route in listing 5.4 does nothing more than map a completely static URL to an
action and controller. Effectively it maps http://example.com/privacy to the Privacy
action of the Help controller.

NOTE Route priorities The order in which routes are added to the route table
determines the order in which they will be searched when looking for a
match. This means routes should be listed in source code from highest
priority with the most specific conditions down to lowest priority or a
catch-all route.

This is a common place for routing bugs to appear. Watch out for
them!

Static routes are useful when there are a small number of URLs that deviate from the
general rule. If a route contains information relevant to the data being displayed on
the page, look at dynamic routes.

5.3.3 Adding a custom dynamic route

Four dynamic routes are added in this section (shown in table 5.5); we’ll consider
them two at a time.

Table 5.4 Static routes

URL Description

1 http://example.com/ Home page, redirects to the widget catalog list

2 http://example.com/privacy Static page containing site privacy policy

Listing 5.4 A static route

Table 5.5 Dynamic routes

URL Description

1 http://example.com/<widget code> Shows a product detail page for the relevant <widget code>

2 http://example.com/<widget code>/buy Adds the relevant widget to the shopping basket

104 CHAPTER 5 Routing

Listing 5.5 implements routes 3 and 4. The route sits directly off the root of the domain,
just as the privacy route did. It does not simply accept any and all values. Instead, it
makes use of a route constraint. By convention, if we place a string value here it will be
treated as a regular expression. We can create our own custom constraints by imple-
menting IRouteConstraint, as we’ll see later in this chapter. A request will only match
a route if the URL pattern matches and all route constraints pass.

routes.MapRoute("widgets", "{widgetCode}/{action}",
 new {controller = "Catalog", action = "Show"},
 new {widgetCode = @"WDG[0-9]{4}"});

TIP If you are planning to host an ASP.NET MVC application on IIS6, mapping
issues will cause the default routing rules not to work. For a quick fix, sim-
ply change the URLs used to have an extension such as {control-
ler}.mvc/{action}/{id}. Chapter 10 presents more detail on this.

The Constraints parameter in MapRoute takes a dictionary in the form of an anony-
mous type which can contain a property for each named parameter in the route. In
listing 5.5 we are ensuring that the request will only match if the {widgetCode} param-
eter starts with WDG followed by exactly 4 digits B. Listing 5.6 shows a controller that
can handle a request that matches the route in listing 5.5.

public ActionResult Show(string widgetCode)
{
 var widget = GetWidget(widgetCode);

 if(widget == null)
 {
 Response.StatusCode = 404;
 return View("404");
 }
 else
 {
 return View(widget);
 }
}

Listing 5.5 shows the action implementation in the controller for the route in listing 5.4.
Although it’s simplified from a real world application, it’s straightforward until we get

3 http://example.com/basket Shows the current user’s shopping basket

4 http://example.com/checkout Starts the checkout process for the current user

Listing 5.5 Implementation of routes 3 and 4

Listing 5.6 The controller action handling the dynamic routes

Table 5.5 Dynamic routes (continued)

URL Description

B

Find widget by
widget code

Return 404 if
widget not found

Render view
for widget

105Implementing routes in ASP.NET MVC

to the case of the widget not being found. That’s a problem. The widget does not exist
and yet we have already assured the routing engine that we would take care of this
request. As the widget is now being referred to by a direct resource locator, the HTTP
specification says that if that resource does not exist, we should return HTTP 404 not
found. Luckily, this is no problem and we can just change the status code in the Response
and render the same 404 view that we have created for the catch-all route. (We’ll cover
catch-all routes later in this chapter.)

NOTE You may have noticed in the previous example that we appear to have
directly manipulated the HttpResponse, but this is not the case. The
Controller base class provides us with a shortcut property to an instance
of HttpResponseBase. This instance acts as a façade to the actual Http-
Response, but allows you to easily use a mock if necessary to maintain
testability. For an even cleaner testing experience, consider using a cus-
tom ActionResult.

TIP It’s good practice to make constants for regular expressions used in
routes as they are often used to create several routes.

Finally, we can add routes 5 and 6 from the schema. These routes are almost static
routes but they have been implemented with a parameter and a route constraint to
keep the total number of routes low. There are two main reasons for this. First, each
request must scan the route table to do the matching, so performance can be a con-
cern for large sets of routes. Second, the more routes you have, the higher the risk of
route priority bugs appearing. Having few route rules is easier to maintain. The regu-
lar expression used for validation in listing 5.7 is simply to stop unknown actions from
being passed to the controller.

routes.MapRoute("catalog", "{action}",
 new{controller="Catalog"},
 new{action=@"basket|checkout"});

We’ve now added static and dynamic routes to serve up content for various URLs in
our site. What happens if a request comes in and doesn’t match any requests? In this
event, an exception is thrown, which is hardly what you’d want in a real application.
For exceptions, we can use catch-all routes.

5.3.4 Catch-all routes

The final route we’ll add to the sample application is a catch-all route to match any
URL not yet matched by another rule. The purpose of this route is to display our HTTP
404 error message. Global catch-all routes, like the one in listing 5.8, will catch any-
thing, and as such should be the last routes defined.

Listing 5.7 Shopping basket and checkout rules

106 CHAPTER 5 Routing

NOTE The standard ASP.NET custom errors section is still useful. For example if
a URL matches your standard {controller}/{action} route, but the con-
troller doesn’t exist, the framework will render the 404 page registered in
that section. If a URL comes in and doesn’t match any route, we’ll get an
exception stating, “The incoming request does not match any route.”
Catch-all routes can help give you even more control in these situations.

routes.MapRoute("catch-all", "{*catchall}", new {controller = "Error",
 action = "NotFound"});

The value "catchall" gives a name to the information that the catch-all route picked
up. You can retrieve this value by providing an action parameter with the same name.

 The action code for the 404 error can be seen in listing 5.9.

public class ErrorController : Controller
{
 public ActionResult Notfound()
 {
 Response.StatusCode = 404;
 return View("404");
 }
}

Catch-all routes can be used for other scenarios as well. If you wanted to match a cer-
tain string first, and then have everything else past the URL captured, you add the
catch-all parameter to the end of the route definition. We saw this earlier:
routes.IgnoreRoute("{resource}.axd/{*pathInfo}") will capture anything after
the first segment. Another interesting use for a catch-all route is for dynamic hierar-
chies, such as product categories. When you reach the limits of the routing system,
create a catch-all route and do it yourself.

 The example in listing 5.8 is a true catch-all route and will literally match any
URL that has not been caught by the higher priority rules. It’s valid to have other
catch-all parameters used in regular routes such as /events/{*info} which would
catch every URL starting with /events/. Be cautious using these catch-all parameters
as they will include any other text on the URL, including slashes and period charac-
ters. It’s a good idea to use a regular expression parameter wherever possible so you
remain in control of the data being passed into your controller action rather than
just grabbing everything.

 At this point, the default {controller}/{action}/{id} route can be removed as
we have completely customized the routes to match our URL schema. You might
choose to keep it around to serve as a default way to access your other controllers.

 We have now customized the URL schema for our website. We have done this with
complete control over our URLs, and without modifying where we keep our control-

Listing 5.8 The catch-all route

Listing 5.9 The controller action for the HTTP 404 custom error
lers and actions. This means that any ASP.NET MVC developer can come and look at

107Using the routing system to generate URLs

our application and know exactly where everything is. This is a powerful concept.
Next, we’ll discover how to use the routing system from within our application.

5.4 Using the routing system to generate URLs
Nobody likes broken links. And since it’s so easy to change the URL routes for your entire
site, what happens if you directly use those URLs from within your application (for exam-
ple, linking from one page to another)? If you changed one of your routes, these URLs
could be broken. Of course the decision to change URLs does not come lightly; it’s gen-
erally believed that you can harm your reputation in the eyes of major search engines
if your site contains broken links. Assuming that you may have no choice but to change
your routes, you’ll need a better way to deal with URLs in your applications.

 Instead, whenever we need a URL in our site, we’ll ask the framework to give it to
us, rather than hard-coding it. We’ll need to specify a combination of controller,
action, and parameters. The ActionLink method does the rest. It’s a method on the
HtmlHelper class included with the MVC framework which generates a full HTML <a>
element with the correct URL inserted to match a route specified from the object
parameters passed in.

<%= Html.ActionLink("WDG0001", "show", "catalog", new { widgetCode =
 "WDG0001" }, null) %>

This example generates a link to the show action on the catalog controller with an
extra parameter specified for widgetCode. The output from this is shown next.

WDG0001

Similarly, if you use the HtmlHelper class’ BeginForm method to build your form tags,
it will generate your URL for you. As you saw in the last section, the controller and
action may not be the only parameters that are involved in defining a route. Some-
times additional parameters are needed to match a route.

 Occasionally it’s useful to be able to pass parameters to an action that has not been
specified as part of the route.

<%= Html.ActionLink("WDG0002 (French)", "show", "catalog",
 new { widgetCode = "WDG0002", language = "fr" }, null) %>

This example shows that passing additional parameters is as simple as adding extra

Internet Explorer’s “friendly” HTTP error messages
If you are using Internet Explorer to develop and browse your application, be careful
that you are not seeing Internet Explorer’s “friendly” error messages when developing
these custom 404 errors, as IE will replace your custom page with its own. To avoid
this, go into Tools > Internet Options and untick “Show friendly HTTP error messages”
under browsing options on the Advanced tab. Your custom 404 page should appear.
Don’t forget, though, that users of your application using Internet Explorer may not
see your custom error pages.
members to the object passed to ActionLink. The link generated by this code is shown

108 CHAPTER 5 Routing

next. If the parameter matches something in the route, it will become part of the URL.
Otherwise it will be appended to the query string, as you can see in this example:

WDG0002 (French)

When using ActionLink, your route will be determined for you, based on the first
matching route defined in the route collection. Most often this will be sufficient, but if
you want to request a specific route, you can use RouteLink. RouteLink accepts a
parameter to identify the route requested, like this:

<%= Html.RouteLink("WDG003", "special-widget-route",
 new { widgetCode = "WDG003" }, null) %>

This will look for a route with the name special-widget-route. Most often you will not
need to use this technique unless the URL generated by routing is not the desired
one. Try to solve the issue by altering route ordering or with route constraints. Use
RouteLink as a last resort.

 Sometimes you need to obtain a URL, but not for the purposes of a link or form.
This often happens when you are writing AJAX code, and the request URL needs to be
set. The UrlHelper class can generate URLs directly, and in fact the UrlHelper is used
by the ActionLink methods and others. Here is an example:

<%= Url.Action("show", "catalog",
 new { widgetCode="WDG0002", language="fr" }) %>

This will return the same URL as above, but without any surrounding tags.

5.5 Creating routes for Code Camp Server
Now that we are armed with the techniques for building routes for an application,
let’s apply this to Code Camp Server. Table 5.6 shows the desired URLs for the applica-
tion. It’s important to list all of the desired entry points to your website. We’ll use this
as a basis for route testing later.

Table 5.6 Desired URLs for Code Camp Server

Example URL Purpose

1 / Redirect to current conference

2 /<conferenceKey> See the details for the conference
specified

3 /<conferenceKey>/edit Edit the conference (admin only)

4 /<conferenceKey>/speakers See the list of speakers for the
conference

5 /<conferenceKey>/speakers/<id>/<personKey> See the details of a speaker

6 /<conferenceKey>/sessions See the list of sessions

7 /<conferenceKey>/sessions/new Create a new session (admin only)

109Creating routes for Code Camp Server

This is a pretty exhaustive list of the URLs that we would like to have for our confer-
ence application. You can see that some of these do not follow the pattern that we are
given by default ({controller}/{action}/{id}), so we have to customize.

 Listing 5.10 defines the route that will handle requests at the root of our site. As you
can see, we rely on the defaults to determine what controller and action to route to.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute("root", "",
 new {controller = "Conference", action = "Current"});
}

In listing 5.11 we want to match a route where the first (and only) segment is the word
login. Because this is a static route, we should define it before other dynamic routes.
This way it is matched before a different, dynamic route matches it.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute("root", "",
 new {controller = "Conference", action = "Current"});

 routes.MapRoute("login", "login",
 new { controller = "Account", action = "Login" });
}

The second and third URL in our list are intended for an action on the conference
controller. We do not explicitly set the controller name in this URL, so we’ll have to set

 8 /<conferenceKey>/sessions/<id>/<sessionKey> See the details of a session

 9 /<conferenceKey>/schedule See the schedule of the conference

10 /<conferenceKey>/attendees See who’s coming

11 /<conferenceKey>/attendees/new Create a new attendee

12 /<conferenceKey>/attendees/<id>/<personKey> See the details of an attendee

13 /login Log in to the site

14 /conference/list List the conferences on the site (admin
only)

15 /conference/new Create a new conference (admin only)

Listing 5.10 Default values help define which controller/action is invoked for site root

Listing 5.11 Defining a static route before other dynamic routes

Table 5.6 Desired URLs for Code Camp Server (continued)

Example URL Purpose
a default value for it. Listing 5.12 shows this.

110 CHAPTER 5 Routing

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute("root", "",
 new {controller = "Conference", action = "Current"});

 routes.MapRoute("login", "login",
 new { controller = "Account", action = "Login" });

 routes.MapRoute("conference", "{conferenceKey}/{action}",
 new {controller = "Conference", action = "Index"});
}

Looks as if this will work for examples 3 and 4, but it will incorrectly match the follow-
ing routes. We’ll treat rules 5 through 12 as static routes, which means they should be
defined above the route we just added. Listing 5.13 shows these new routes.

public static void RegisterRoutes(RouteCollection routes)
{
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");
 routes.MapRoute("root", "",
 new {controller = "Conference", action = "Current"});
 routes.MapRoute("login", "login",
 new { controller = "Account", action = "Login" });
 routes.MapRoute("sessions", "{conferenceKey}/sessions/{action}",
 new {controller = "Sessions", action = "index"});
 routes.MapRoute("attendees", "{conferenceKey}/attendees/{action}",
 new { controller = "Attendees", action = "index" });
 routes.MapRoute("speakers", "{conferenceKey}/speakers/{action}",
 new {controller = "Speakers", action = "Index"});

 routes.MapRoute("schedule", "{conferenceKey}/schedule/{action}",
 new {controller = "Schedule", action = "Index"});
 routes.MapRoute("conference", "{conferenceKey}/{action}",
 new {controller = "Conference", action = "Index"});
}

The new routes (bolded) define the general routes for sessions, attendees, speakers,
and the schedule. These are similar enough that you might already be looking to com-
bine them with a single, dynamic route. We’ll visit that later in the chapter.

 These routes also will not match the SEO-friendly routes we wanted, namely exam-
ples 5, 8, and 12. Listing 5.14 contains the definitions for these. Notice how the listing
uses constraints on the {id} segment so that it will not incorrectly match as an action
on another route. Because these routes are more specific, we’ll need to add them
before the more general (but very similar) routes.

public static void RegisterRoutes(RouteCollection routes)
{

Listing 5.12 Routes for satisfying examples 3 and 4

Listing 5.13 Static routes for sessions, speakers, attendees, and more

Listing 5.14 Providing SEO-friendly routes that take extra information
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

111Testing route behavior

 routes.MapRoute("root", "",
 new {controller = "Conference", action = "Current"});

 routes.MapRoute("login", "login",
 new { Controller = "Account", Action = "Login" });

 routes.MapRoute("single_session",
 "{conferenceKey}/sessions/{id}/{sessionKey}",
 new {controller = "Sessions", action = "show"},
 new {id = @"\d+"});

 routes.MapRoute("sessions", "{conferenceKey}/sessions/{action}",
 new {controller = "Sessions", action = "index"});

 routes.MapRoute("single_attendee",
 "{conferenceKey}/attendees/{id}/{personKey}",
 new { controller = "Attendees", action = "show" });

 routes.MapRoute("attendees", "{conferenceKey}/attendees/{action}",
 new { controller = "Attendees", action = "index" });

 routes.MapRoute(null, "{conferenceKey}/speakers/{id}/{personKey}",
 new {controller = "Speakers", action = "Show"},
 new {id = @"\d+"});

 routes.MapRoute("speakers", "{conferenceKey}/speakers/{action}",
 new {controller = "Speakers", action = "Index"});

 routes.MapRoute("schedule", "{conferenceKey}/schedule/{action}",
 new {controller = "Schedule", action = "Index"});

 routes.MapRoute("conference", "{conferenceKey}/{action}",
 new {controller = "Conference", action = "Index"});
}

The bolded routes now allow our SEO-friendly URLs for sessions, speakers, and attend-
ees. This allows nice URLs such as http://example.com/sessions/129/introduction-to-
asp-net-mvc. The constraint is a simple regular expression that matches one or more
integers.

 We have now addressed each URL in our table of desired URLs (table 5.6). Now it’s
time to write unit tests to ensure that these routes work as intended. This will also
ensure that future routes will not break our URL structure.

5.6 Testing route behavior
When compared with the rest of the ASP.NET MVC Framework, testing routes is not
easy or intuitive. Although ASP.NET MVC has advanced the functions interfaces and
abstract base classes, many elements still must be mocked out before route testing is
possible. Luckily, MvcContrib has a nice, fluent route testing API, which we can use to
make testing these routes easier. But before we look at that, listing 5.15 demonstrates
how you would test a route with NUnit and Rhino Mocks.

using System.Web;
using System.Web.Routing;
using NUnit.Framework;

Listing 5.15 Testing routes can be a pain.
using NUnit.Framework.SyntaxHelpers;

112 CHAPTER 5 Routing

using Rhino.Mocks;

namespace CodeCampServerRoutes.Tests
{
 [TestFixture]
 public class NaiveRouteTester
 {
 [Test]
 public void root_matches_conference_controller_and_current_action()
 {
 const string url = "~/";
 var request = MockRepository.GenerateStub<HttpRequestBase>();
 request.Stub(x => x.AppRelativeCurrentExecutionFilePath)
 .Return(url).Repeat.Any();
 request.Stub(x => x.PathInfo)
 .Return(string.Empty).Repeat.Any();

 var context = MockRepository.GenerateStub<HttpContextBase>();
 context.Stub(x => x.Request).Return(request).Repeat.Any();

 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
 var routeData = RouteTable.Routes.GetRouteData(context);

 Assert.That(routeData.Values["controller"],
 Is.EqualTo("Conference"));
 Assert.That(routeData.Values["action"], Is.EqualTo("Current"));
 }
 }

}

If all of our route tests looked like that, nobody would even bother. Those specific
stubs on HttpContextBase and HttpRequestBase were not lucky guesses. It took a
peek inside of Reflector to find out exactly what to mock. This is not how a testable
framework should behave! Luckily, we do not have to deal with this if we are smart.
MvcContrib’s fluent route testing API makes this a lot easier. Listing 5.16 is the same
test, using MvcContrib:

using System.Web.Routing;
using CodeCampServerRoutes.Controllers;
using MvcContrib.TestHelper;
using NUnit.Framework;

namespace CodeCampServerRoutes.Tests
{
 [TestFixture]
 public class FluentRouteTester
 {
 [Test]
 public void root_matches_conference_controller_and_current_action()
 {
 MvcApplication.RegisterRoutes(RouteTable.Routes);

Listing 5.16 Much better route testing with MvcContrib’s TestHelper project
 "~/".ShouldMapTo<ConferenceController>(x => x.Current()); B

113Testing route behavior

 }
 }
}

This is all done with the magic and power of extension methods and lambda expressions.
 You can’t get away so easily! What kind of magic are you talking about?
 Inside of MvcContrib there is an extension method on the string class that builds

up a RouteData instance based on the parameters in the URL. The RouteData class
has an extension method on it to assert that the route values match a controller and
action B. You can see from the example that the controller comes from the generic
type argument to the ShouldMapTo<TController>() method. The action is then spec-
ified with a lambda expression. The expression is parsed to pull out the method call
(the action) and any arguments passed to it.

 The arguments are matched with the route values. See the code for yourself here:
http://code.google.com/p/mvccontrib/source/browse/trunk/src/MvcContrib.Test-
Helper/MvcContrib.TestHelper/Extensions/RouteTestingExtensions.cs.

 Now it’s time to apply this to our Code Camp Server routing rules and make sure
that we have covered the desired cases. We do that in listing 5.17.

using System.Web.Routing;
using CodeCampServerRoutes.Controllers;
using MvcContrib.TestHelper;
using NUnit.Framework;

namespace CodeCampServerRoutes.Tests
{
 [TestFixture]
 public class RouteTester
 {
 [SetUp]
 public void SetUp()
 {
 RouteTable.Routes.Clear();
 MvcApplication.RegisterRoutes(RouteTable.Routes);
 }

 [Test]
 public void incoming_routes()
 {
 "~/".ShouldMapTo<ConferenceController>(x => x.Current());

 "~/boiseCodeCamp".ShouldMapTo<ConferenceController>(
 x => x.Index("boiseCodeCamp"));

 "~/boiseCodeCamp/edit".ShouldMapTo<ConferenceController>(
 x => x.Edit("boiseCodeCamp"));

 "~/portlandTechFest/speakers".ShouldMapTo<SpeakersController>(
 x => x.Index("portlandTechFest"));

 "~/portlandTechFest/speakers/12/barney-rubble"

Listing 5.17 Testing Code Camp Server routes
 .ShouldMapTo<SpeakersController>(

http://code.google.com/p/mvccontrib/source/browse/trunk/src/MvcContrib.TestHelper/MvcContrib.TestHelper/Extensions/RouteTestingExtensions.cs
http://code.google.com/p/mvccontrib/source/browse/trunk/src/MvcContrib.TestHelper/MvcContrib.TestHelper/Extensions/RouteTestingExtensions.cs

114 CHAPTER 5 Routing

 x => x.Show("portlandTechFest", 12));

 "~/michigandayofdotnet/sessions"
 .ShouldMapTo<SessionsController>(
 x => x.Index("michigandayofdotnet"));

 "~/michigandayofdotnet/sessions/82/learning-nunit"
 .ShouldMapTo<SessionsController>(
 x => x.Show("michigandayofdotnet", 82));

 "~/houstonTechFest/schedule".ShouldMapTo<ScheduleController>(
 x => x.Index("houstonTechFest"));

 "~/austinCodeCamp/attendees".ShouldMapTo<AttendeesController>(
 x => x.Index("austinCodeCamp"));

 "~/austinCodeCamp/attendees/new"
 .ShouldMapTo<AttendeesController>(
 x => x.New("austinCodeCamp"));

 "~/austinCodeCamp/attendees/123/bob-johnson"
 .ShouldMapTo<AttendeesController>(
 x => x.Show("austinCodeCamp", 123));

 "~/login".ShouldMapTo<AccountController>(x => x.Login());

 "~/conference/new".ShouldMapTo<ConferenceController>(
 x => x.New());
 }
 }
}

NOTE You should probably separate out your tests into logical test methods. I
have combined them for the sake of brevity in the example.

After running this example, we see that all of our routes are working properly (the
output may look slightly different depending on your testing framework and runner):

------ Test started: Assembly: CodeCampServerRoutes.Tests.dll ------

1 passed, 0 failed, 0 skipped, took 2.03 seconds.

Remember earlier when we noticed an opportunity to make those other routes more
dynamic? This would avoid duplication in the route rules and hopefully make them
easier to understand. Armed with tests to back us up, we can now attempt to combine
these routes.

 We can probably match these all with a single route along the lines of {confer-
enceKey}/{controller}/{action}; however this route would prevent the preceding
one ({conferenceKey}/{action}) from matching the routes on Conference-

Controller. It’s clear that we’ll have to leverage route constraints to get the URLs
we want.

 If we add the {conferenceKey}/{action} route first, then all we need to do is
make it not match when the second segment—{action}—is equal to one of the other
controller names. This can be accomplished fairly easily with regular expressions. List-

ing 5.18 shows the modified route.

115Using routing with existing ASP.NET projects

routes.MapRoute("conference", "{conferenceKey}/{action}",
 new { controller = "Conference", action = "Index" },
 new { conferenceKey = "(?!conference|account).*",
 action = "(?!speakers|schedule|sessions|sttendees).*" });

This route will no longer match any route that has one of the values specified in the
action constraint. This will allow us to match the request in a later route, which we
have defined in listing 5.19.

routes.MapRoute("other_controllers",
 "{conferenceKey}/{controller}/{action}",
 new {action="index"},
 new { conferenceKey = "(?!conference|account).*" });

This route must also contain the conferenceKey constraint, so that the final route
(which is the default route provided in ASP.NET MVC applications) will match URLs
that have Conference or Account in the first segment.

 Now that we’re done with the change, we’ll run the tests again to make sure we
didn’t break anything.

------ Test started: Assembly: CodeCampServerRoutes.Tests.dll ------

1 passed, 0 failed, 0 skipped, took 1.97 seconds.

Excellent! Only by having unit tests can we be this confident this fast that we didn’t
break anything.

 There is an important facet of route testing that we have paid little attention to so
far: outbound routing. As defined earlier, outbound routing refers to the URLs that are
generated by the Framework, given a set of route values. Look to projects like Mvc-
Contrib to eventually provide helpers for this type of route testing in the future. At the
time of writing, no examples of outbound route testing were available.

 Now that you’ve seen two complete examples of realistic routing schemas, you are
prepared to start creating routes for your own applications. You have also seen some
helpful unit testing extensions to make unit testing inbound routes much easier. We
haven’t yet mentioned that all of this routing goodness is available to Web Forms proj-
ects as well!

5.7 Using routing with existing ASP.NET projects
The URL problems discussed at the start of this chapter (URLs tied directly to files on
disk, no ability to embed dynamic content in the URL itself, and so on) can affect all
websites/applications and although you may not be in a position to adopt a full MVC
pattern for an application, you should still care about your application’s URL usability.
System.Web.Routing is a separate assembly released as part of .NET 3.5 SP1, and as

Listing 5.18 Constraining the route so it will not be so greedy

Listing 5.19 Matching our other controllers with a single route

Don’t match
conference
or account

Don’t match other controllers
you might guess, it’s available for use in Web Forms as well.

116 CHAPTER 5 Routing

 Luckily, by importing the UrlRoutingModule from the System.Web.Routing
assembly, we can use the routing mechanism from the MVC framework in existing
ASP.NET Web Forms applications. To get started, open an existing ASP.NET Web Forms
project and add the lines from listing 5.20 (and 5.21 for IIS 7) in to the assemblies
and httpModules sections in your web.config.

<assemblies>
 <add assembly="System.Web.Routing, Version=3.5.0.0, Culture=neutral,

PublicKeyToken=31BF3856AD364E35" />
 ...
</assemblies>

...

<httpModules>
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,

System.Web.Routing, Version=3.5.0.0, Culture=neutral,
PublicKeyToken=31BF3856AD364E35"/>

 ...
</httpModules>

...

<system.webServer>
 <handlers>
 <add name="UrlRoutingHandler" preCondition="integratedMode" verb="*"
 path="UrlRouting.axd"
 type="System.Web.HttpForbiddenHandler, System.Web, Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 ...
 </handlers>
 ...
 <modules>
 <remove name="UrlRoutingModule" />
 <add name="UrlRoutingModule" type="System.Web.Routing.UrlRoutingModule,
 System.Web.Routing,
 Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31BF3856AD364E35"/>
 ...
 </modules>
</system.webServer>

Next, we need to define a custom route handler that will—you guessed it—handle the
route! You may have a custom route handler for each route, or you might choose to
make it more dynamic. It’s entirely up to you.

 Defining the route is similar to methods we’ve seen earlier, except that there are
no controllers and actions to specify. Instead you just specify a page. A sample route
for Web Forms might look like this:

Listing 5.20 Configuration for the UrlRoutingModule

Listing 5.21 Configuration for IIS 7 integrated mode

For IIS6 or IIS7
classic mode

117Summary

RouteTable.Routes.Add("ProductsRoute", new Route
 (
 "products/apparel",
 new CustomRouteHandler("~/Products/ProductsByCategory.aspx",
 "category=18")
));

The custom route handler simply needs to build the page. Here is a bare-bones han-
dler that will work:

public class CustomRouteHandler : IRouteHandler
{
 public CustomRouteHandler(string virtualPath, string queryString)
 {
 this.VirtualPath = virtualPath;
 this.QueryString = queryString;
 }

 public string VirtualPath { get; private set; }
 public string QueryString { get; private set; }

 public IHttpHandler GetHttpHandler(RequestContext
 requestContext)
 {
 requestContext.HttpContext.RewritePath(
 String.Format("{0}?{1}", VirtualPath, QueryString));

 var page = BuildManager.CreateInstanceFromVirtualPath
 (VirtualPath, typeof(Page)) as IHttpHandler;
 return page;
 }
}

Now, requests for /products/apparel will end up being served by the URL in the
example.

NOTE When using UrlRoutingModule to add routing capabilities to your Web
Forms application, you are essentially “directing traffic” around parts of
the normal ASP.NET request processing pipeline. This means that the
normal URL-based authorization features of ASP.NET will be circum-
vented, and even if users don’t have access to a particular page, they can
view it if the CustomRouteHandler does not implement authorization
checking or the route is not listed in the authorization rules in the
web.config. Although the complete implementation is outside the
scope of this text, you can use the UrlAuthorizationModule.Check-
UrlAccessForPrincipal() method to verify a user has access to a partic-
ular resource.

5.8 Summary
In this chapter we have seen how the routing module in the ASP.NET MVC Framework
gives us virtually unlimited flexibility when designing routing schemas able to imple-
ment both static and dynamic routes. Best of all, the code needed to achieve this is rel-

atively insignificant.

118 CHAPTER 5 Routing

 Designing a URL schema for an application is the most challenging thing we have
covered in this chapter and there is never a definitive answer to what routes should be
implemented. Although the code needed to generate routes and URLs from routes is
simple, the process of designing that schema is not. Ultimately every application is dif-
ferent. Some will be perfectly happy with the default routes created by the project
template, whereas others will have complex, custom route definition spanning multi-
ple C# classes.

 We saw that the order in which routes are defined determines the order they are
searched when a request is received and that you must carefully consider the effects of
adding new routes to the application. As more routes are defined, the risk of breaking
existing URLs increases. Your insurance against this problem is route testing.
Although route testing can be cumbersome, helpers like the fluent route testing API
in MvcContrib can certainly help.

 The most important thing to note from this chapter is that there should be no
application written with the ASP.NET MVC Framework that is limited in its URL by the
technical choices made by source code layout, and that can only be a good thing! Sep-
aration of the URL schema from the underlying code architecture gives ultimate flexi-
bility and allows you to focus on what would make sense for the user on the URL
rather than what the layout of your source code requires.

 We’d like to offer a special note of thanks to Dave Verwer, who wrote the initial ver-
sion of this chapter. In the next chapter, we’ll see how to customize and extend the
ASP.NET MVC Framework.

Customizing and
 extending the ASP.NET

 MVC Framework
One of the greatest aspects of ASP.NET MVC is its flexibility. The majority of the
framework is built upon interfaces and abstract base classes, which enables unit
testing of components in isolation. This also gives us the ability to substitute our
own implementations of these features. ASP.NET MVC comes with functional default
implementations, but sometimes these don’t meet our needs. Sometimes we don’t
agree with the choices that Microsoft bakes in, and by customizing these compo-

This chapter covers
■ Customizing route handlers
■ Creating your own controller factory
■ Extending the controller
■ Decorating controller actions for additional behavior
■ Building and using custom view engines
119

nents we are free to make our own choices.

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

120 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

 In this chapter we’ll cover some of the extension points of the ASP.NET MVC
Framework. We’ll surround their use with examples and mention the purpose of each
one. By the end of the chapter, you will be familiar with most of the extensible compo-
nents of ASP.NET MVC and how to apply them.

 First we’ll examine URL routing. We’ll take a look at how it functions and then
explore how to enhance it to behave differently.

6.1 Extending URL routing
The UrlRoutingModule is an implementation of IHttpModule and represents the
entry point into the ASP.NET MVC Framework. This module examines each request,
builds up the RouteData for the request, finds an appropriate IRouteHandler for the
given route matched, and finally redirects the request to the IRouteHandler’s
IHttpHandler. Make sense?

 In chapter 5 we discovered how routing works. Our default route looked like list-
ing 6.1. The MapRoute method is actually a simplified way of specifying routes. The
same route can be specified more explicitly, as is shown in listing 6.2.

routes.MapRoute("default", "{controller}/{action}/{id}",
 new { Controller="home", Action="index", id=""});

routes.Add(new Route("{controller}/{action}/{id}",
 new RouteValueDictionary(new { Controller = "home", Action = "index",
 id = "" }), new MvcRouteHandler()));

That third argument in listing 6.2 is telling the framework which IRouteHandler to
use for this route. We are using the built-in MvcRouteHandler that ships with the
framework. By default we are using this class when using the MapRoute method. We
can change this to be a custom route handler and take control in interesting ways. An
IRouteHandler is responsible for creating an appropriate IHttpHandler to handle the
request given the details of the request. This is a good place to change the way routing
works, or perhaps to gain control extremely early in the request pipeline. The
MvcRouteHandler simply constructs an MvcHandler to handle a request, passing it a
RequestContext, which contains the RouteData and an HttpContextBase.

 A quick example will help illustrate the need for a custom route handler. When
starting to define your routes, you’ll sometimes run across errors. Let’s assume you
have defined the route shown in listing 6.3.

routes.MapRoute("conferenceKey", "{conferenceKey}/{action}",
 new { Controller = "Conference", Action="index" });

Here we’ve added a new custom route at the top position that will accept URLs like

Listing 6.1 A simple way of specifying routes

Listing 6.2 A more detailed way of specifying routes

Listing 6.3 Adding another route
/HoustonCodeCamp2008/register, use the conference controller, and call the register

http://www.codeplex.com/CommonServiceLocator
http://www.codeplex.com/CommonServiceLocator
http://castleproject.org/
http://mvccontrib.org
http://mvccontrib.org

121Extending URL routing

action on it, passing in the conferenceKey as a parameter to the action, as shown in
listing 6.4.

public class ConferenceController : Controller
{
 public ActionResult Register(string conferenceKey)
 {
 return View();
 }
}

This is a good example of a custom route that makes your URLs more readable.
 Now let’s assume that we have another controller called Home. HomeController

has an Index action to show the start page, as shown in listing 6.5.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

We’d like the URL for the action in listing 6.4 to look like /home/index. If we try this
URL, we’ll get a 404 error as shown in figure 6.1. Why?

Listing 6.4 A controller action that handles the new route

Listing 6.5 A controller action to respond to the default route

Figure 6.1 This
message doesn’t tell
us much about what’s
wrong. An action
couldn’t be found on
the controller, but
which one?

122 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

The problem is not apparent from that error message. We certainly have a controller
called HomeController, and it has an action method called Index. If you dig deep into
the routes you can deduce that this URL was picked up by the first route, {confer-
enceKey}/{action}, which was not what we intended. We should be able to quickly
indentify a routing mismatch, so that we can fix it speedily.

 With lots of custom routes, it is easy for a URL to be caught by the wrong route.
Wouldn’t it be nice if we had a diagnostics tool to display which routes are being
matched (and used) for quickly catching these types of errors?

 What we’d like to do is have an extra querystring parameter that we can tack on if
we want to see the route information. The current route information is stored in an
object called RouteData, available to us in the IRouteHandler interface. The route
handler is also first to get control of the request, so it is a great place to intercept and
alter the behavior for any route, as shown in listing 6.6.

public class CustomRouteHandler : IRouteHandler
{
 public IHttpHandler GetHttpHandler(RequestContext requestContext)
 {
 if(HasQueryStringKey("routeInfo",
 requestContext.HttpContext.Request))
 {
 OutputRouteDiagnostics(requestContext.RouteData,
 requestContext.HttpContext);
 }

 var handler = new CustomMvcHandler(requestContext);
 return handler;
 }

 private bool HasQueryStringKey(string keyToTest,
 HttpRequestBase request)
 {
 return Regex.IsMatch(request.Url.Query,
 string.Format(@"^\?{0}$", keyToTest));
 }
}

A route handler’s normal responsibility is to construct and hand off the IHttpHandler
that will handle this request. By default, this is MvcHandler. In our CustomRoute-
Handler we first check to see if the querystring parameter is present B (we do this
with a simple regular expression on the URL query section). The OutputRouteDiag-
nostics method is shown in listing 6.7.

private void OutputRouteDiagnostics(RouteData routeData, HttpContextBase
context)

{

Listing 6.6 A custom route handler creates an associated IHttpHandler.

Listing 6.7 Rendering route diagnostic information to the response stream

B

http://nvelocity.sourceforge.net/
http://www.castleproject.org/MonoRail/documentation/trunk/viewengines/brail/index.html
http://www.castleproject.org/MonoRail/documentation/trunk/viewengines/brail/index.html
http://boo.codehaus.org/
http://boo.codehaus.org/
http://boo.codehaus.org/

123Extending URL routing

 var response = context.Response;
 response.Write(
 @"<style>body {font-family: Arial;}
 table th {background-color: #359; color: #fff;}
 </style>
 <h1>Route Data:</h1>
 <table border='1' cellspacing='0' cellpadding='3'>
 <tr><th>Key</th><th>Value</th></tr>");
 foreach (var pair in routeData.Values)
 {
 response.Write(string.Format("<tr><td>{0}</td><td>{1}</td></tr>",
 pair.Key, pair.Value));
 }

 response.Write(
 @"</table>
 <h1>Routes:</h1>
 <table border='1' cellspacing='0' cellpadding='3'>
 <tr><th></th><th>Route</th></tr>");
 bool foundRouteUsed = false;
 foreach(Route r in RouteTable.Routes)
 {
 response.Write("<tr><td>");
 bool matches = r.GetRouteData(context) != null;
 string backgroundColor = matches ? "#bfb" : "#fbb";
 if(matches && !foundRouteUsed)
 {
 response.Write("»");
 foundRouteUsed = true;
 }
 response.Write(string.Format(
 "</td><td style='font-family: Courier New;
 background-color:{0}'>{1}</td></tr>",
 backgroundColor, r.Url));
 }

 response.End();
}

This method outputs two tables, one for the current route data, and one for the
routes in the system. Each route will return null for GetRouteData if the route doesn’t
match the current request. The table is then colored to show which routes matched,
and a little arrow indicates which route is in use for the current URL. The response is
ended to prevent any further rendering.

 To finalize this change, we have to alter the current routes to use our new handler,
as shown in listing 6.8.

RouteTable.Routes.Add(
 new Route("{conferenceKey}/{action}",
 new RouteValueDictionary(new { Controller="Conference" }),
 new CustomRouteHandler()));

Listing 6.8 Assigning routes to our custom route handler

Create an
HTML table

Display
the routes

Green
if matching,
red otherwise

Chevron (») next
to route selected

http://mvccontrib.org/

124 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

RouteTable.Routes.Add(
 new Route("{controller}/{action}/{id}",
 new RouteValueDictionary(
 new { Controller="Home", Action="Index", id="" }),
 new CustomRouteHandler()));

The end result (shown in figure 6.2) is incredibly helpful. Let’s use the /home/index
URL (that resulted in a 404 in figure 6.1) but this time we’ll add ?routeInfo to the
querystring. We can see in the route data table that the value home was picked up as a
conference key. The route table confirms that the conference key route was picked up
first, since it matched.

 Now you can immediately tell that the current route used is not the one we
intended. We can also tell whether or not other routes match this request by the color
of the cell. If you’re reading the print version of this book this might not be apparent,
but if you run the sample application you’ll see that both rows are green. We now
quickly identify the issue as a routing problem and can fix it accordingly. In this case,
if we add constraints to the first route such that conferenceKey isn’t the same as one
of our controllers, the problem is resolved. Remember that order matters! The first route
matched is the one used.

 Of course you wouldn’t want this information to be visible in a deployed applica-
tion, so use it only to aid your development. You could also build a switch that changes
the routes to the CustomRouteHandler if you’re in debug mode, which would be a
more automated solution. I’ll leave this as an exercise for the reader.

Figure 6.2 Appending the querystring parameter ?routeInfo to our URL gives us detailed

information about the current request’s route. We can see now that the wrong route was chosen.

125Creating your own ControllerFactory

NOTE This example was inspired by Phil Haack’s route debugger that he posted
on his blog when the ASP.NET MVC Framework was in Preview 2. It is a
great example of what you can do with the information provided to you
by the routing system. You can see his original example of here:

http://haacked.com/archive/2008/03/13/url-routing-debugger.aspx

Another potential use of a custom route handler would be to append a specific identi-
fier to the querystring automatically. This could be useful in scenarios where you rely
on cookie-less sessions or have a company identifier that limits what is displayed on
the screen (your authors have interfaced with such a framework). An IHttpHandler
that would satisfy this requirement might look like listing 6.9:

public class EnsureCompanyKeyHandler : MvcHandler
{
 public EnsureCompanyKeyHandler(RequestContext requestContext)
 : base(requestContext)
 {
 }

 protected override void ProcessRequest(HttpContextBase context)
 {
 var controller =
 (string)RequestContext.RouteData.Values["controller"];
 var company = context.Request.QueryString["company"];

 if (controller != "login" && company == null)
 {
 context.Response.Redirect("~/login");
 }
 else
 {
 base.ProcessRequest(context);
 }
 }
}

In this example, every request must have a company key B, and the Process-
Request method will not continue unless the URL contains one. Since we have guar-
anteed that every request will contain the company key, why don’t we pass this on to
our controllers automatically? That is an interesting question, and is the subject of
the next section.

6.2 Creating your own ControllerFactory
Controllers are the core of any Model-View-Controller framework. The flexibility (or
inflexibility) of a framework in this regard can make it ultimately useful (or not).
Microsoft shipped the MVC framework with an IController interface and the abstract
base class: Controller. Controller makes many decisions for us, and controllers that

Listing 6.9 An MvcHandler that can enforce querystring parameters

B

Force user
to login
derive from it are automatically instantiated by the framework.

http://haacked.com/archive/2008/03/13/url-routing-debugger.aspx

126 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

 The ability to take control of controller instantiation gives us the flexibility to pass
in arguments to the Controller’s constructor or even create different implementa-
tions of IController. We’ll start with the controller factory for passing in arguments,
continuing the example from the previous section.

6.2.1 The ControllerFactory implementation

Let’s assume that we want all our controllers to be given the specific company object
(based on the company key) from the database. Listing 6.10 shows our base controller
class.

public abstract class CompanyControllerBase : Controller
{
 private readonly Company _company;
 protected Company Company
 {
 get { return _company; }
 }

 protected CompanyControllerBase(Company company)
 {
 _company = company;
 }
}

By making our only constructor take the Company object in as a parameter, we are
enforcing all derived classes to also accept this as a constructor argument.

 In this example, we will have a Company class, uniquely identified by a friendly iden-
tifier companyKey. The companyKey would be something like “MSFT” or “AAPL.” To get
the company object, assume that we can utilize an ICompanyService (which takes care
of data access and caching for us).

 This controller base could be extended as shown in listing 6.11:

public class EmployeeController : CompanyControllerBase
{
 public EmployeeController(Company company) : base(company)
 {
 }

 public ActionResult List()
 {
 return View(Company.Employees);
 }
}

If we try to run this code and access the list action, we’ll get an error and shown in fig-
ure 6.3.

Listing 6.10 A base controller that requires specific constructor arguments

Listing 6.11 CompanyControllerBase subclasses require a nondefault constructor

No default
constructor exists

127Creating your own ControllerFactory

We need to assume control over building the controller to fix this. If we examine the
stack trace closely, we can see which object is trying to build our controller class, as
shown in figure 6.4:

Reflector comes to the rescue here. Using Reflector, we can pry open the assembly
and take a look at what DefaultControllerFactory is doing that causes the error, as
shown in figure 6.5.

 As you can see in figure 6.5, Activator.CreateInstance is being used to create
the controller. This requires a parameter-less constructor. If we could somehow tell the
ControllerBuilder to let us create the controller, we could pass in the company
object ourselves. Well, guess what? We can.

 The ControllerBuilder is a singleton class that allows you to specify which ICon-
trollerFactory to use when instantiating controllers. To wire up your custom ICon-
trollerFactory, type the following code in the Application_Start event:

ControllerBuilder.Current.SetControllerFactory(
 typeof(CompanyControllerFactory));

The CompanyControllerFactory is our custom class. Like most extension points in
the ASP.NET MVC Framework, it is based on an interface, as shown in listing 6.12.

Figure 6.3 By
default, controllers
cannot be created
without a no-arg
constructor.

Figure 6.4 Examination of the stack trace shows us the culprit.

http://www.visualt4.com/downloads.html
http://blogs.msdn.com/webdevtools/archive/2009/01/29/t4-templates-a-quick-start-guide-for-asp-net-mvc-developers.aspx
http://blogs.msdn.com/webdevtools/archive/2009/01/29/t4-templates-a-quick-start-guide-for-asp-net-mvc-developers.aspx

128 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

public class CompanyControllerFactory : IControllerFactory
{

Listing 6.12 ControllerFactory to build CompanyController-based controllers

Figure 6.5 Digging into the framework using Reflector. Reflector is a free download at http://www.red-
gate.com/reflector.

Browsing the source code of the ASP.NET MVC Framework
Reflector can be a powerful tool, as you can see in figure 6.5; however, it won’t retain
original variable names or comments from the source code. Fortunately the ASP.NET
team released the source code for this framework (under the MS-PL license), and you
can download it to browse around and see how it is implemented. Often there are
helpful comments that can give you insights and aid your learning of the framework.

It is unfortunate that we even need to see the source to understand how to extend
the framework, but thankfully the source is available to us.

You can download the source code directly from http://asp.net/mvc. Alternatively,
you can use the Microsoft Reference Symbol Servers to automatically step into and
debug code built into the framework. That’s right, you can actually debug .NET Frame-
work code! In May 2009 the ASP.NET MVC source code was added to this reference.
For more details, visit the Microsoft Reference Source Code Center at http://refer-
encesource.microsoft.com/ .
 private readonly ICompanyService _companyService;

http://www.redgate.com/reflector
http://www.redgate.com/reflector
http://asp.net/mvc
http://referencesource.microsoft.com/
http://referencesource.microsoft.com/

129Creating your own ControllerFactory

 public CompanyControllerFactory() :
 this(ServiceLocator.Resolve<ICompanyService>())
 {
 }

 public CompanyControllerFactory(ICompanyService companyService)
 {
 _companyService = companyService;
 }

 public IController CreateController(RequestContext context,
 Type controllerType)
 {
 if (controllerType.IsSubclassOf(typeof (CompanyControllerBase)))
 {
 string companyKey =
 context.HttpContext.Request.QueryString["company"];

 Company company = _companyService.FindCompany(companyKey);

 if (company == null)
 context.HttpContext.Response.Redirect("~/login");

 return (IController) Activator.CreateInstance(
 controllerType, company);
 }

 return (IController) Activator.CreateInstance(controllerType);
 }

 public IController CreateController(RequestContext context,
 string controllerName)
 {
 string fullControllerName = "MvcApplication.Controllers."
 + controllerName + "Controller";
 var controllerType = Type.GetType(fullControllerName, false, true);
 return CreateController(context, controllerType);

 }

 public void ReleaseController(IController controller)
 {
 if(controller is IDisposable)
 ((IDisposable)controller).Dispose();
 }
}

The CompanyControllerFactory utilizes the ICompanyService to retrieve the com-
pany based on the company key D, which we can guarantee exists in the querystring
C. If the company key was valid and a company object was returned, we would pass
this in the constructor to the controller in question F and we’d be done. If the speci-
fied company does not exist then the user will be redirected to the login page E.

 Obviously your LoginController must not inherit from CompanyControllerBase
or you’ll be in an infinite redirect loop. Any controller class that doesn’t inherit from
the base class will be built assuming no constructor arguments G.

 You might have noticed that the ControllerFactory itself accepted an ICompany-

B

C

D

E

F

G

Service in its constructor B. This is called IoC (or dependency injection), and it is a

130 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

technique used often to decouple systems and make them more testable. IoC contain-
ers are tools that allow you to declare your dependencies, and request to resolve them
at runtime. If you aren’t familiar with IoC, read up on http://martinfowler.com/
articles/injection.html. We’ll utilize this technique in our next example.

NOTE The CompanyControllerFactory has two constructors, one that accepts
an instance of ICompanyService and one that does not. We can use the
detailed constructor for testing, and the framework will use the default
constructor. When you cannot control the creation of the class, but you
still want to allow your dependencies to be injected, you can use the
Service Locator pattern, as we have here. A .NET implementation of Ser-
vice Locator is available at http://www.codeplex.com/CommonService-
Locator. It works in conjunction with a number of popular DI
frameworks. You will learn more about dependency injection later in
this chapter.

6.2.2 Leveraging IoC for your controllers

Earlier we added support for injecting a single custom object into the controllers to
make our lives easier. That technique, although useful for this scenario, breaks down
once you add a second type of object, then a third, and so on. If we leverage an IoC
container, our controllers will be more flexibile.

 Within a week of the first CTP of ASP.NET MVC, community members added sup-
port for “The Big 3” inversion of control containers: Spring.NET, Castle Windsor, and
StructureMap. (They are called The Big 3 because they were the three most widely
used at the time.) Since then, others such as Unity have been implemented. Let’s take
a look at how a couple of these are implemented.
A CASTLE WINDSOR CONTROLLERFACTORY

The Castle Project is a collection of useful frameworks and components used to build
applications. Castle Windsor is just a small part of this project. You can configure
Windsor to store the types of objects you want to build either in an XML configuration
file or in a code file. I prefer to configure it with code, because it is far less verbose,
and you get the added benefit of IntelliSense.

 To add Windsor to your application, download the binaries from http://castle-
project.org and reference these assemblies in your project:

■ Castle.Core
■ Castle.MicroKernel
■ Castle.DynamicProxy2
■ Castle.Windsor

For this example, let’s assume that we have a controller that lists sessions for a confer-
ence. Our SessionsController will take an implementation of IConferenceReposi-
tory to get the conference in question, as shown in listing 6.13.

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html
http://www.codeplex.com/CommonServiceLocator
http://www.codeplex.com/CommonServiceLocator
http://castleproject.org
http://castleproject.org

131Creating your own ControllerFactory

public class SessionsController : Controller
{
 private readonly IConferenceRepository _conferenceRepository;

 public SessionsController(
 IConferenceRepository conferenceRepository)
 {
 _conferenceRepository = conferenceRepository;
 }

 public ActionResult Index(string conferenceKey)
 {
 var conf = _conferenceRepository.GetConference(conferenceKey);
 var sessions = conf.GetSessions();
 return View(sessions);
 }

}

NOTE When we ask for dependencies in the constructor, we call it constructor
injection. There is another technique called property injection but it is not as
apparent that these components are required for the object to do its job.
Windsor can do both, but constructor injection is recommended.

In Windsor, you store objects (or types) in a container. These can be requested later by
type (or by interface) and Windsor will do the dirty work of arranging the dependency
chain to build up a fully constructed object and hand it to you. So if your dependency
has dependencies, and those have more dependencies, Windsor wires it all up for you.
The first thing we need to do is register all the types we are going to use in the con-
tainer. For starters, all of the controllers need to be added, because Windsor will be
building them for us. Listing 6.14 shows this in detail.

private void InitializeWindsor()
{
 _container = new WindsorContainer();

 _container.AddComponentLifeStyle<SessionsController>(
 LifestyleType.Transient);

 _container
 .AddComponent<IConferenceRepository, ConferenceRepository>();

}

It can be tedious to manually add each controller, so you might consider using the
Windsor registration extension methods in MvcContrib, or consider adding a snippet
like this to automatically add all of your controllers:

var assemblyTypes = typeof(SessionsController).Assembly.GetTypes();
foreach(var controllerType in

Listing 6.13 A controller that has a dependency listed in the constructor

Listing 6.14 Initializing Windsor

Dependencies passed
through constructor

Called by
Application_Start

Ensure
controllers
are Transient

Add other components
 assemblyTypes.Where(t=>typeof(IController).IsAssignableFrom(t)))

132 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

{
 container.AddComponentLifeStyle(controllerType.Name.ToLower(),
 controllerType, LifestyleType.Transient);
}

Now that Windsor is wired up, we need to create a simple controller factory that will
use Windsor to build our controllers, as shown in listing 6.15.

using System;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;
using Castle.MicroKernel;
using Castle.Windsor;

public class MyWindsorControllerFactory : IControllerFactory
{
 private readonly IWindsorContainer _container;

 public MyWindsorControllerFactory(IWindsorContainer container)
 {
 _container = container;
 }

 public IController CreateController(RequestContext requestContext,
 string controllerName)
 {
 try
 {
 controllerName = controllerName.ToLower() + "controller";
 var controller =
 _container.Resolve<IController>(controllerName);
 return controller;
 }
 catch (ComponentNotFoundException)
 {
 throw new HttpException(
 404, "The controller was not found");
 }
 }

 public void ReleaseController(IController controller)
 {
 _container.Release(controller);
 }
}

The class implements the IControllerFactory interface, which requires two methods:
CreateController and ReleaseController. Each of these is trivial; we simply ask the
container to resolve our type C. The name needs to be lowercase and suffixed with
"controller" B in order for the key to match what we entered in listing 6.13. If the
component is not found in the container, an exception will be thrown. We don’t want

Listing 6.15 A simplified controller factory for Windsor

B

C

D

E

our users seeing a nasty exception if they type in a bad URL. In this instance, a 404 (Not

133Creating your own ControllerFactory

Found) error code should be thrown back to the browser D. Finally, the ReleaseCon-
troller method E asks Windsor to dispose of the controller.

 Now that we have a controller factory, how do we tell the framework to use it? Place
the following code at the bottom of the InitializeWindsor method:

ControllerBuilder.Current.SetControllerFactory(new

➥ MyWindsorControllerFactory(_container));

From this point on, all our controllers will be built using our new controller factory.
This example works, but a more full-featured version is available in MvcContrib along
with a handful of others. One of these is the StructureMapControllerFactory, which
we will examine next.
A STRUCTUREMAP CONTROLLER FACTORY

For this example we will simply leverage the existing work within MvcContrib. You can
find the latest releases at http://mvccontrib.org. Better yet, download the source and
build it yourself. Reading the source is an excellent learning tool. Assuming you now
have the MvcContrib binaries, copy the following files into your project:

■ StructureMap.dll
■ MvcContrib.dll
■ MvcContrib.StructureMap.dll

In StructureMap, you don’t have to add the controllers to the container. You can sim-
ply request the object, and its dependencies will be fulfilled. Registering other depen-
dencies is as easy as this:

StructureMapConfiguration.ForRequestedType<IConferenceRepository>()
 .TheDefaultIsConcreteType<ConferenceRepository>();

Next is setting the controller factory to the StructureMapControllerFactory, which
by now should be obvious:

ControllerBuilder.Current.SetControllerFactory(
 new StructureMapControllerFactory());

That’s all there is to it. We can now access the controller from listing 6.12, and the
dependency will be satisfied by StructureMap. I have barely scratched the surface of
what Windsor and StructureMap can do, but we can easily see how they satisfy control-
ler dependencies.

 Now that you’ve seen two complete IoC controller factories, others are straightfor-
ward. Any IoC controller factory will be so similar that you won’t even notice which
one you’re using. Just declare your dependencies as constructor arguments and every-
thing works. The only thing that changes is the configuration to register the depen-
dencies and the code to manage the container. Understanding and leveraging an IoC
container is a great way to decouple your applications and embrace testability.

 We’ve taken a look at how to customize the creation of controllers. Next, we’ll see
how to gain additional behavior by extending the Controller class, given to us by the
framework.

http://mvccontrib.org

134 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

6.3 Extending the controller
Creating a replacement implementation for Controller is straightforward. The only
requirement is that you implement the IController interface, which has one
required method: Execute. This gives the implementer ultimate control when decid-
ing how a controller should behave. Microsoft ships with a functional default imple-
mentation, but if you need something drastically different, you can roll your own.

 You’ll rarely have to start from scratch and implement IController directly. A lot
of work is required to translate a single Execute method into something useful. If you
don’t care for the way actions are invoked, or perhaps don’t like the ActionResult
way of returning objects, you might roll your own IController implementation. For
more basic modifications you can simply inherit from Controller and override the
desired method to add or alter behavior.

 The Controller class, which derives from ControllerBase, provides these virtual
methods that you can override and handle in inherited classes:

■ ExecuteCore —The entry point. Everything starts here.
■ HandleUnknownAction —Called when action cannot be found.
■ OnAuthorization —Occurs when an authorization filter runs.
■ OnActionExecuting —Occurs before an action is executed.
■ OnActionExecuted —Occurs after an action is executed.
■ OnResultExecuting —Occurs before an ActionResult is executed.
■ OnResultExecuted —Occurs after an ActionResult is executed.
■ OnException —Occurs if an action throws an exception.

In addition, you can override and alter the built-in ActionResult helper methods,
namely:

■ Content —Returns a ContentResult with the literal content passed in.
■ File —Returns a FileResult with appropriate response headers.
■ JavaScript —Returns a JavaScriptResult that contains JavaScript to be exe-

cuted on the client.
■ Json —Returns a JsonResult with a JSON serialized object.
■ PartialView —Returns a PartialViewResult that renders a partial.
■ Redirect —Returns a RedirectResult with the given URL.
■ RedirectToAction —Returns a RedirectToRouteResult that redirects to the

given action.
■ RedirectToRoute —Returns a RedirectToRouteResult that redirects to the

given route.
■ View —Returns a ViewResult object corresponding to the view.

These extension points allow you to intercept and alter behavior at many levels, at
each step in the controller pipeline. Next is an example that will show this in action.

135Extending the controller

6.3.1 Creating a FormattableController

Ruby on Rails has a feature that allows actions to be rendered in a variety of formats. A
request for /products would render an HTML page to be displayed by the browser. A
similar request of /products.xml would call the same action; however the result
would be formatted as an XML document. JSON could also be requested with /prod-
ucts.json. This allows you to easily reuse actions for use in AJAX requests, or allows
your customers to use your URLs as an API for your application. We are going to walk
through creating a controller called FormattableController with this feature.

NOTE When the formattable controller feature was first introduced in Ruby on
Rails, it was designed to help advance the RESTful nature of that frame-
work. (We learned a little bit about REST in chapter 5.) This technique
can help support a RESTful architecture by providing different represen-
tations for our models.

We added the formattable feature to ASP.NET MVC by subclassing Controller. Let’s
take AttendeesController from Code Camp Server as an example. We want the
Index action to render an HTML document, an XML document, or a JSON object with
the attendee data that is passed to the view.

 We’ll start with the basic action. This returns predefined data; however the real
application would probably get items from the database, as shown in listing 6.16.

public ActionResult Index()
{
 var attendees = new[] {
 new Attendee { Name="Fred Flinstone",
 City = "Bedrock", Comments = "yabba dabba doo",
 Registered = DateTime.Parse("Mar 03 1942")},
 new Attendee { Name="Charlie Chaplin",
 City="Manhattan", Comments=".....",
 Registered=DateTime.Parse("Jul 18 1918")},
 new Attendee { Name="John Smith",
 City="Tulsa, OK", Comments="howdy",
 Registered=DateTime.Parse("Apr 7 1999")}
 };

 return View(attendees);
}

This action renders a simple list of attendees, as you can see in figure 6.6. The result
contains an entire HTML document, with the content portion formatted as a table
according to our view template.

 What if we wanted to allow a separate application to retrieve the current list of
attendees from our site? It would be easier for that application to consume XML or
JSON instead of screen-scraping the HTML for the needed data.

 Let’s create a new route that understands formats.

Listing 6.16 A simple action that returns Attendees to the view

136 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

//global.asax
routes.MapRoute("Format", "{controller}/{action}.{format}/{id}",
 new {id = ""});

This route will match /attendees/index.xml. When this happens, we will have a
route value called format that we can use in the controllers. Armed with this, we can
create a base class that can handle the various formats that we allow. Listing 6.17 shows
our new base controller in detail.

public abstract class FormattableController : Controller
{
 private static readonly string[] ValidFormats =
 new[] {"xml", "html", "json"};
 protected string Format { get; set; }

 protected override void OnActionExecuting(
 ActionExecutingContext filterContext)
 {
 base.OnActionExecuting(filterContext);

 var routeValues = filterContext.RouteData.Values;
 var formatKey = "format";
 if(routeValues.ContainsKey(formatKey))
 {
 string requestedFormat =
 routeValues[formatKey].ToString().ToLower();
 if (Array.Exists(ValidFormats, x => x == requestedFormat))
 {

Listing 6.17 A base controller that understands formats

Figure 6.6 Our action
renders a simple HTML
table with the
attendee listing.

B

C

 Format = requestedFormat;

137Extending the controller

 return;
 }
 }

 Format = "html";
 }
 }

In this class we override the OnActionExecuting method B to intercept the call and
check to see if we have a format specified in the route values. We also ensure that the
format matches one of the formats that we intend to handle C. The FormatResult
method (listing 6.18) will be called from the actions instead of the other Action-
Result methods.

protected ActionResult FormatResult(object viewModel)
{
 switch(Format)
 {
 case "html" : return View(viewModel);
 case "xml": return new XmlResult(viewModel);
 case "json": return Json(viewModel);
 default:
 throw new FormatException(
 string.Format("Cannot handle the requested format '{0}'",
 Format));
 }
}

For each supported type, we simply return the correct ActionResult derivative that
handles the type. The XmlResult class comes from MvcContrib B, which serializes
the object into XML. The Json method returns a JsonResult C and automatically
serializes the object into JSON format. If there were other formats, we could add them
to this class and return the appropriate ActionResult instance.

 Now we can inherit the AttendeesController from FormattableController and
change the return call from listing 6.16 to utilize the new FormatResult method. List-
ing 6.19 demonstrates these changes (in bold).

public class AttendeesController : FormattableController
{
 public ActionResult Index()
 {
 var attendees = new[] {
 new Attendee { Name="Fred Flinstone",
 City = "Bedrock", Comments = "yabba dabba doo",
 Registered = DateTime.Parse("Mar 03 1942")},
 new Attendee { Name="Charlie Chaplin",
 City="Manhattan", Comments=".....",
 Registered=DateTime.Parse("Jul 18 1918")},

Listing 6.18 The FormatResult method returns the correct ActionResult

Listing 6.19 Changing the base class using the new FormattableController

B
C

138 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

 new Attendee { Name="John Smith",
 City="Tulsa, OK", Comments="howdy",
 Registered=DateTime.Parse("Apr 7 1999")}
 };

 return FormatResult(attendees);
 }
}

We can try the same URL again to make sure the HTML result still renders (and it does).
We can also try /attendees/index.xml (figure 6.7) and /attendees/index.json (fig-
ure 6.8) to verify the new formats work!

NOTE What is JSON? JSON is a format that is easily consumed via JavaScript. If
you are not familiar with the JSON format, refer to chapter 9 for details.

Our simple example demonstrated some of the extension points available to control-
lers. Next up, we will see how to apply functionality to a single action across many con-
trollers. These extension points are called action filters.

6.3.2 Working with action filters

Action filters are typically attributes that you can decorate on an action (or controller)
that execute before the action is called. Because action filters are backed by inter-
faces, you can implement them as simple classes as well. Just as we wrote code to cap-
ture the format for a request, we can write action filters that handle the events thrown
by the controller. Examples of built-in action filters are the following:

Figure 6.7 Requesting with an .xml extension gives us an XML document with the data.

139Extending the controller

■ [Authorize]—Allows you to secure an action to a set of roles/users
■ [HandleError]—Captures exceptions thrown and allows you to display friendly

error pages
■ [OutputCache]—Caches the output of the action for future requests
■ [AcceptVerbs]—Limits the HTTP verbs that are allowed to call the action

Creating your own action filters is easy. You simply inherit from ActionFilterAttrib-
ute and override the methods provided.

 Let’s create a simple action filter. In a login page, you usually want to utilize SSL to
protect the user’s credentials from being sent in plaintext across a network. Often
sites will require certain URLs to be accessed with SSL. We can accomplish this with a
simple action filter that redirects to the SSL URL. You can set the Result property on
the ActionExecutingContext or use the HttpContext directly. Listing 6.20 has the
action filter, while its usage is shown in listing 6.21.

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Class)]
public class RequireSSLAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext filterContext)
 {
 var requestUri = filterContext.HttpContext.Request.Url;
 if(requestUri.Scheme == "http")
 {

Listing 6.20 A custom action filter to require SSL for an action

Figure 6.8 Requesting with a .json extension yields a JSON object.

140 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

 string url = requestUri.ToString()
 .Replace("http://", "https://");

 filterContext.HttpContext.Response.Redirect(url);
 }
 }
}

[RequireSSL]
public class LoginController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
 }

The action filter is placed on the class element when you want all actions in the con-
troller to have the attribute. To be selective, place the action filter on the methods in
question. Now, a request for /login will result in an HTTP 302 redirect to the equiva-
lent https:// URL. The HTTP headers for this example are shown in figure 6.9.

Action filters provide an easy way to share common functionality across controllers
without bloating a controller base class with unrelated functionality.

NOTE The action filter classes are created by the ControllerActionInvoker
calling the ReflectedActionDescriptor, which constructs the filter using
a default (no-arg) constructor. To inject dependencies in your action fil-

Listing 6.21 Using the RequireSSL action filter

Ensure URL
begins with https

Figure 6.9 Requesting
/login from http:// with a
RequireSSL action filter
yields a redirect to https://.
ters, you have a couple of options. You can use the Service Locator pattern,

141Creating a custom view engine

as we saw earlier, or you can write your own IActionInvoker (or derive
from ControllerActionInvoker) that understands how to request the fil-
ters from the container. With Windsor (or other IoC frameworks) you reg-
ister an implementation for IActionInvoker in the container and it will
be set (via property injection) on all controller instances. For most people,
using a service locator will be a quicker solution.

Now that we have seen how to extend controllers, we can examine how to customize
the way views are rendered.

6.4 Creating a custom view engine
Most of the samples in this section use the default, WebFormViewEngine. Indeed it is
usually a smart choice for benefits it provides:

■ Familiar experience
■ Strongly typed
■ IntelliSense
■ Compiled form

Why would you want anything else? At times the strong typing and code block syntax
can get in your way. Visual Studio statement completion and autocode formatting
tend to make code blocks inside views look awkward. In C# we prefer curly braces on
their own line. In a view, it is easier to read if the open curly brace is on the same line.
In Visual Studio 2008 you cannot have two separate rules for code formatting. What
you choose for your code will also affect your views.

 In addition, the WebFormViewEngine templates contain excessive line noise to
accomplish something simple (we’ll see a great example in a bit). Often views can be
expressed much more concisely with a template syntax like NVelocity. Those who have
used the Castle Monorail framework might also prefer Brail as a template language.
Both of these exist (along with others) in MvcContrib.

NOTE NVelocity NVelocity is a port of the Apache Velocity project. You can
read more about NVelocity at http://nvelocity.sourceforge.net.

Brail Brail is a template language that uses Boo, which is a dynamic CLS-
compliant language for .NET. Read more about Brail at the Monorail
website here: http://www.castleproject.org/MonoRail/documentation/
trunk/viewengines/brail/index.html.

Details about Boo are located at http://boo.codehaus.org.

Consider the code in listing 6.22.

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<%
 if (Request.IsAuthenticated) {

Listing 6.22 A WebFormViewEngine user control to display login info
%>

http://nvelocity.sourceforge.net
http://www.castleproject.org/MonoRail/documentation/trunk/viewengines/brail/index.html
http://www.castleproject.org/MonoRail/documentation/trunk/viewengines/brail/index.html
http://boo.codehaus.org

142 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

 Welcome <%= Html.Encode(Page.User.Identity.Name) %>!
 [<%= Html.ActionLink("Log Off", "LogOff", "Account") %>]
<%
 }
 else
 {
%>
 [<%= Html.ActionLink("Log On", "LogOn", "Account") %>]
<%
 }
%>

This is taken from the default project template LoginUserControl.ascx, which is
located in the Shared folder. There is lots of “gunk” here (to appease the compiler)
that takes away from the actual content being displayed. Now look at the same thing,
implemented with NVelocity (listing 6.23).

#if($isAuthenticated)
 Welcome $html.encode($httpcontext.user.identity.name)!
 [$html.actionlink("Log Off", "LogOff", "Account")]
#else
 [$html.actionlink("Log On", "LogOn", "Account")]
#end

This is much easier to write and read, but NVelocity has drawbacks. One drawback is
the limited number of helper methods available on the view. Most helper methods are
extension methods on HtmlHelper, so they don’t come automatically. MvcContrib
contains a facility for adding new HtmlHelper extension types to get around this limi-
tation. In addition, NVelocity does not automatically have Visual Studio integration for
IntelliSense, compile-time checking of views, or refactoring. If these drawbacks are
too significant to ignore, you can revert to the WebFormViewEngine. If you like easy-to-
write/read, concise view code, then read on. We’ll discover how to write a trivial (and
quite naïve) view engine.

 There are two main components of a view engine. The IViewEngine implementa-
tion finds and builds an appropriate IView implementation. The latter usually does the
heavy lifting. Our SimpleViewEngine will simply find the template on disk (the tem-
plate could be from anywhere) and construct a SimpleView to return. The SimpleView
will interpret the template, along with ViewData, and emit the result to the response
stream, as shown in listing 6.24.

public class SimpleViewEngine : IViewEngine
{
 public ViewEngineResult FindPartialView(
 ControllerContext controllerContext, string partialViewName,
 bool useCache)

Listing 6.23 Showing the same login status with NVelocity syntax

Listing 6.24 A simple IViewEngine implementation
 {

143Creating a custom view engine

 return FindView(controllerContext, partialViewName);
 }

 public ViewEngineResult FindView(ControllerContext controllerContext,
 string viewName, string masterName, bool useCache)
 {
 return FindView(controllerContext, viewName);
 }

 private ViewEngineResult FindView(ControllerContext controllerContext,
 string partialViewName)
 {
 var controllerName = controllerContext.Controller.GetType().Name
 .Replace("Controller", "");
 var server = controllerContext.HttpContext.Server;
 var extension = "st";

 string pathPattern = string.Format("~/Views/{{0}}/{0}.{1}",
 partialViewName, extension);
 var paths = new[] {
 string.Format(pathPattern, controllerName),
 string.Format(pathPattern, "Shared")
 };

 foreach(var path in paths)
 {
 if(File.Exists(server.MapPath(path)))
 return new ViewEngineResult(
 new SimpleView(server.MapPath(path)), this);
 }

 return new ViewEngineResult(paths);
 }

 public void ReleaseView(ControllerContext controllerContext,
 IView view)
 {
 if(view is IDisposable)
 ((IDisposable)view).Dispose();
 }
}

The responsibility of the view engine is to locate the view (we chose to look on disk)
and construct an appropriate view instance for return. The view we created is shown
in listing 6.25.

public class SimpleView : IView
{
 private readonly string _file;

 public SimpleView(string file)
 {
 _file = file;
 }

 public void Render(ViewContext viewContext, TextWriter writer)

Listing 6.25 A simple view

Same logic for
partial views

Construct view
locations

Build
SimpleView
and return

Report where
we looked
 {

144 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

 Regex propertyPattern = new Regex(@"\$\[(?<property>[^\]]+)\]");
 string fileContents = File.ReadAllText(_file);
 foreach(Match match in propertyPattern.Matches(fileContents))
 {
 var property = match.Groups["property"].Value;
 var value = viewContext.ViewData[property].ToString();
 fileContents = fileContents.Replace(match.Value, value);
 }

 writer.Write(fileContents);
 }
}

We configure our view engine in the Application_Start event like this:

ViewEngines.Engines.Add(new SimpleViewEngine());

NOTE Notice that Engines is a collection, so you can have multiple view engines
in the same application. The collection has order, so the first view engine
to find a matching view will be rendered.

Our naïve view simply finds properties in the template with the format $[proper-
tyName]. Each of these is matched with an element in ViewData and replaced on the
view. Finally the result is written to the TextWriter. This view engine is not very
usable, because we don’t have any conditional branching, loops, child templates, or
support for complex types. It does show the basic steps required for any custom view
engine implementation. A sample view is shown in listing 6.26, and the rendered out-
put is displayed in figure 6.10.

<html>
<head>
</head>
<body>
 <h1>Awesome view!</h1>
 <p>$[Message]</p>
 <p>This was rendered at $[Time]</p>
</body>
</html>

One other aspect of our example is flawed
—the way we are sending the content to the
TextWriter. We do it all in one chunk. To
take advantage of buffering it is important
to render the content as you process it. This
adds significant complexity to the render-
ing logic. For the sake of brevity we have
shown a simplified version here.

 Having flexibility to choose different
view engines is a wonderful property of
the ASP.NET MVC Framework. Leveraging

Listing 6.26 A simple template (index.st)

Matches
$[variable]

format

Figure 6.10 A rendered template based on the

a view engine that fits your development simple view engine

145Customizing Visual Studio for ASP.NET MVC

style and leads to less friction will help you be more productive as a developer. One
major area of ASP.NET MVC customization remains: customizing some of the Visual
Studio tooling around the framework.

6.5 Customizing Visual Studio for ASP.NET MVC
As you saw earlier, specific tooling within Visual Studio makes building ASP.NET MVC
applications faster. We will look at two quick ways of customizing these tools.

6.5.1 Creating custom T4 templates

If you right-click on an action, you’ll see an option to open the Add View dialog,
shown in figure 6.11. In this dialog, you can choose the name of the view, the view
model type, and the master page. If you select a strongly typed view, you have the
option of choosing an automatic view template. The options are Empty, List, Create,
Details, and Delete. Figure 6.11 shows us selecting Create for our view content and
Conference for our view model.

 The options in the View Content dropdown list are T4 templates that are located in

C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\ItemTemplates\
CSharp\Web\MVC\CodeTemplates\AddView

NOTE T4 templates are a little-known feature of Visual Studio. They are code
generation template processors built into Visual Studio. T4 templates
allow you to customize how files are generated using a familiar syntax.

If we press Add, we’re given a complete form, generated for us by Visual Studio using
the default template. Our view now looks like listing 6.27.

Figure 6.11 The Add View dialog
allows you to autogenerate

scaffolding for your model.

146 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

<h2>Details</h2>

<%= Html.ValidationSummary("Create was unsuccessful. Please correct the

➥ errors and try again.") %>

<% using (Html.BeginForm()) {%>

 <fieldset>
 <legend>Fields</legend>
 <p>
 <label for="Name">Name:</label>
 <%= Html.TextBox("Name") %>
 <%= Html.ValidationMessage("Name", "*") %>
 </p>
 <p>
 <label for="Description">Description:</label>
 <%= Html.TextBox("Description") %>
 <%= Html.ValidationMessage("Description", "*") %>
 </p>
 <p>
 <label for="StartDate">StartDate:</label>
 <%= Html.TextBox("StartDate") %>
 <%= Html.ValidationMessage("StartDate", "*") %>
 </p>
 <p>
 <label for="EndDate">EndDate:</label>
 <%= Html.TextBox("EndDate") %>
 <%= Html.ValidationMessage("EndDate", "*") %>
 </p>
 <p>
 <input type="submit" value="Create" />
 </p>
 </fieldset>

<% } %>

<div>
 <%=Html.ActionLink("Back to List", "Index") %>
</div>

As you can see, lots of code is generated for us. It con-
tains a basic form, with fields corresponding to the
object, complete with validation, Submit button, and
back link. This can get us started building the applica-
tion quickly. Of course this is just a starting point, and
you’re free to customize it from here. This template is
static, and you can create a different, application-spe-
cific template for the Create view.

 Add a folder in your project called CodeTemplates.
Into this folder, copy the contents of the default tem-
plate folder. You can create subfolders corresponding
to the different types of templates (figure 6.12).

Listing 6.27 The autogenerated Create view based on the Conference object

Figure 6.12 Copy the
templates into your project
under a CodeTemplates folder
to customize them.

147Customizing Visual Studio for ASP.NET MVC

 These templates will be effective for the current project only. You are free to alter
the templates here for your project. You can also add more items to this list. Adding
another .tt file in this folder will enable it for selection in the Add View dialog, as show
in figure 6.13.

The templates themselves are fairly complex. Here is an excerpt from the Control-
ler.tt template:

<#@ template language="C#" HostSpecific="True" #>
<#@ output extension="cs" #>
<#
MvcTextTemplateHost mvcHost = (MvcTextTemplateHost)(Host);
#>
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

Figure 6.13 Adding new template files in the Add View folder enables them for selection in the Add
View dialog.

148 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

using System.Web.Mvc.Ajax;

namespace <#= mvcHost.NameSpace #>
{
 public class <#= mvcHost.ItemName #> : Controller
 {
 //
 // GET: /<#= mvcHost.ControllerRootName #>/

 more

As you can see, code blocks are denoted by <# #> blocks. Each template has a Host
property that contains basic context information. For MVC templates, this is actually of
type MvcTextTemplateHost, so we can see here that the template is casting the Host
property and storing it in a variable called mvcHost for use later in the template.

 T4 templates can be a little intimidating but you can do a lot of things with them. If
you are interested in customizing the templates, download Visual T4 Editor for Visual
Studio 2008 Community Edition (free) from Clarius Consulting. This will give you
syntax highlighting, which is really helpful when you find yourself writing code
that writes code! The tool can be downloaded at http://www.visualt4.com/
downloads.html. To learn more about T4 template syntax and the ASP.NET MVC
integration, check out http://blogs.msdn.com/webdevtools/archive/2009/01/29/
t4-templates-a-quick-start-guide-for-asp-net-mvc-developers.aspx.

6.5.2 Adding a custom test project template to the new project wizard

When you first create an ASP.NET MVC project, you’re eventually greeted with the dia-
log shown in figure 6.14:
Figure 6.14 When you create a new project, you are asked if you want to create a unit test project.

http://www.visualt4.com/downloads.html
http://www.visualt4.com/downloads.html
http://blogs.msdn.com/webdevtools/archive/2009/01/29/t4-templates-a-quick-start-guide-for-asp-net-mvc-developers.aspx
http://blogs.msdn.com/webdevtools/archive/2009/01/29/t4-templates-a-quick-start-guide-for-asp-net-mvc-developers.aspx

149Customizing Visual Studio for ASP.NET MVC

Unfortunately, the only available test framework that is provided out of the box is the
Visual Studio Unit Test framework. Developers who are experienced with testing will
no doubt prefer NUnit, MbUnit, or xUnit.NET. There is hope! You can add your
framework of choice to this dialog box (and simultaneously implement a custom proj-
ect template).

 The first step is to create a project that represents what you want when you create
new ASP.NET MVC applications with the test project included. Make sure all third-party
references (such as NUnit, Rhino Mocks) are set to Copy Local. Then go to File >
Export Template. Follow the wizard here, which will result in a single zip file. Copy
this zip file to

C:\Program Files\Microsoft Visual Studio\9.0\Common7\IDE\ProjectTemplates\CSharp\Test

(If you’re running on a 64-bit machine, then adjust the path to C:\Program Files
(x86) accordingly). Now that you’ve got the template in the right place, close all
instances of Visual Studio, open up the Visual Studio 2008 Command Prompt (as
Administrator if UAC is enabled), and run

devenv /installvstemplates

This will take a few seconds. Now that you have a project template installed into Visual
Studio, open regedit and navigate to

HKEY_LOCAL_MACHINE\Software\Microsoft\VisualStudio\9.0\MVC\

➥ TestProjectTemplates

Here you’ll find the default Visual Studio Unit Test key. To create a custom entry,
make a new key here, and add the following String values:

■ Package —Leave blank unless you have a custom Visual Studio package GUID to
register here.

■ Path —Usually CSharp\Test.
■ TestFrameworkName —The name that you want to appear in the Unit Test

Framework dropdown.
■ AdditionalInfo —A URL that provides the user more information about your

framework or template. When the user clicks on Additional Info, the browser
will navigate to this URL.

■ Template —The name of the zip file that contains the template.

Figure 6.15 shows a new template installed in this location.

NOTE On 64-bit machines–like the one we are using–the registry path is slightly
different (…SOFTWARE\Wow6432Node\Microsoft…). In addition, the Pro-
gram Files path is actually C:\Program Files (x86)\. Be sure to adjust
accordingly for your system as shown in figure 6.15.

With all of this in place, we can launch Visual Studio, create a new ASP.NET MVC Web
Application project, and be greeted with the message shown in figure 6.16.

150 CHAPTER 6 Customizing and extending the ASP.NET MVC Framework

6.6 Summary
In this chapter, you have seen some of the extension points in the ASP.NET MVC
Framework. You learned how to create a custom IRouteHandler, to add behavior sur-
rounding the life of MVC requests. You learned how to create custom base controllers
to encapsulate and reuse functionality. You also learned how to leverage dependency
injection and custom controller factories for building these controllers. To accommo-
date cross-controller concerns, you learned how to use attributes to decorate actions
with custom behaviors. We implemented a naïve view engine to demonstrate the mov-
ing parts, and also discovered how to customize Visual Studio to evolve with you as you

Figure 6.15 Adding a registry entry for a new custom test project template. Note that this registry path
is for 64-bit machines.

Figure 6.16 Our new test template is now available in the Create Unit Test
Project dialog box.
adopt new styles for developing applications.

151Summary

 Hopefully you noticed how easy it was to extend the framework. Because most
objects that you interact with are either interfaces or abstract base classes, the frame-
work allows you to completely (or almost completely) substitute behavior for your
own. At this level of flexibility the ASP.NET MVC Framework shines. Running parallel
to the ASP.NET MVC project is the open source project called MvcContrib (http://
mvccontrib.org). This is the playground for customizations and extensions that peo-
ple find useful. Your authors recommend that you examine MvcContrib regularly for
extensions that might be useful to you (and contribute back if they would be useful to
others!).

 The next chapter will use some of these extension points and cover tools and tech-
niques for letting the framework scale in the face of complex web applications.

http://mvccontrib.org
http://mvccontrib.org

Scaling the architecture
 for complex sites
Most applications we write grow beyond their originally intended use. Often we see
quick-and-dirty, low-quality demos graduate directly to production. These applica-
tions have to be maintained, and likely by you (or me). Complexity is inevitable,
but we can follow good design principles to keep the applications maintainable.

 How can we ensure that we are creating maintainable solutions in the face of
complexity? One key principle to follow is the single responsibility principle (SRP).
This principle states that a piece of code should only have one reason to change. In

This chapter covers
■ Taming large controller actions
■ Leveraging view helpers
■ Using partials
■ Creating components
■ Applying action filters
■ Organizing controllers into areas
152

153Taming large controller actions

this chapter we will visit some of the areas that often grow out of control in sites of any
measurable size. The first is controller actions.

7.1 Taming large controller actions
We’re all guilty of it. Given a place to put our code, we do just that: put code in a file.
And it grows. And grows. Pretty soon we’re staring at single methods that span the
entire viewable region. For starters, we should be able to read the entire action on a
single screen. No, I don’t mean wrap the offending code in a #region block and hide
it. (Yes, your authors have seen this too). We need to identify the areas that belong in
other classes and extract them.

 An example will surely help. In the context of Code Camp Server, let’s say you
wanted to provide a facility for first-time installers to set up their administrator
accounts automatically. The workflow would be like figure 7.1.

 The first time a user installs Code Camp Server, no users will be present in the sys-
tem. So when they request /admin and it redirects to /login, we can provide a better
first-time install experience by allowing the user to create an admin account.

 The login action checks to see if any users have been set up in the system. If not,
then it prompts the user to create a new administrator account. When the user sub-
mits this form, it submits to the CreateAdminAccount action. Now of course we don’t
want random blokes to submit fake HTTP POSTS to this action, so we protect it by ver-
ifying that there are still no users in the system before proceeding.

 With a general idea of what we want, we open up LoginController.cs and write
the action shown in listing 7.1:

User requests /admin

ogged in? Redirected
to /login

dmin
account
exists?

Create dmin

Render

User ?

User requests /admin

Logged in? Redirected
to /login

Admin
account
exists?

Create admin
account

Render login
form

User logs In

Yes No

Valid?
Yes

No

Yes

No

Finished

Figure 7.1
Workflow for creating the first
administrator account

154 CHAPTER 7 Scaling the architecture for complex sites

public ActionResult CreateAdminAccount(string firstName, string
lastName, string email, string password, string passwordConfirm)

{
 if (GetNumberOfUsers() > 0)
 {
 throw new SecurityException(@"This action is only valid when
 there are no registered users in the system.");
 }

 if (string.IsNullOrEmpty(email)
 || string.IsNullOrEmpty(password))
 {
 TempData["error"] = "Email and Password are required.";
 return RedirectToAction("index");
 }

 if (password != passwordConfirm)
 {
 TempData["error"] = "Passwords must match";
 return RedirectToAction("index");
 }

 Person admin = new Person(firstName, lastName, "");
 admin.PasswordSalt = _crypto.CreateSalt();
 admin.Password = _crypto.HashPassword(password,
 admin.PasswordSalt);
 admin.IsAdministrator = true;

 _personRepository.Save(admin);

 return RedirectToAction("index");
}

That’s a lot of code for one method. First it’s checking to verify that there are still no
users in the system B (to prevent this action from being called once users have been
defined). Then it’s validating the presence of the fields C and that the password and
confirmation password match D. Finally the admin account is created and saved to
the database E. In this code the authentication cookie is not being set, so it is
assumed that the user would have to fill out the actual login form after this action was
completed. (Please excuse our lack of attention to usability in this example.)

 How can we get this controller under control? (Sorry for the pun.) For starters we
can identify that we have three calls to return RedirectToAction("index"). No mat-
ter what, the user will end up at the index view. We also have a section for validation,
where we want to return an error message to the view. Finally, we have the section that
creates and saves the Person object and marks the Person as an administrator.

 If we were to extract most of this functionality into another class that has the dis-
tinct responsibility of creating an admin account, we could simplify this code. Verify-
ing that the user count is still zero is not really a responsibility of this new create-an-
admin class, and thus it should remain a part of the controller. The rest relates
directly to creating an admin account, so we can extract this into a method on

Listing 7.1 The CreateAdminAccount action

B

C

D

E

another class: CreateAdminAccountTask. The name of the class indicates its function

http://localhost/billing/home/about
http://localhost/billing/home/about

155Taming large controller actions

exactly. The responsibility of any given class should be painfully obvious. If not, your
class is probably either named inappropriately or is not fully decomposed into logical
units. Listing 7.2 illustrates a refactoring of the code.

public class LoginController
{
 /* snip */

 ICreateAdminTask _createAdminTask;

 /* snip */

 public ActionResult CreateAdminAccount(string firstName,
 string lastName, string email, string password,
 string passwordConfirm)
 {
 if (GetNumberOfUsers() > 0)
 {
 throw new SecurityException(@"This action is only valid
 when there are no registered users in the system.");
 }

 _createAdminTask.Execute(firstName, lastName, email, password,
 passwordConfirm);

 if (!_createAdminTask.Success)
 {
 TempData["error"] = _createAdminTask.ErrorMessage;
 return RedirectToAction("index");
 }

 TempData["message"] =
 "Your admin account was created successfully.";
 return RedirectToAction("index", "home");
 }

Listing 7.2 The updated CreateAdminAccount action

The single responsibility principle
The guiding principle behind this refactoring is the SRP. Basically, SRP states that a
class should have one and only one responsibility. Another way to look at it is that a
class should only have one reason to change. If you find that a class has potential
to be changed for nonrelated reasons, the class is probably doing too much. A com-
mon violation of SRP is mixing data access with business logic. For example, a Cus-
tomer probably shouldn’t have a Save() method.

SRP is a core concept of good object-oriented design, and its application can help
your code become more maintainable. SRP is sometimes referred to as separation
of concerns (SoC). You can read more about SRP/SoC from Bob Martin’s excellent
article on the subject:

http://www.objectmentor.com/resources/articles/srp.pdf

Injected via the
constructor
}

http://www.objectmentor.com/resources/articles/srp.pdf

156 CHAPTER 7 Scaling the architecture for complex sites

Here we have introduced a new interface (defined in listing 7.3) which is responsible
for creating the admin account. This interface encapsulates the validation and opera-
tion for our sequence of code. It provides a clear separation of responsibility and a
mechanism for returning success/failure along with error messages. The implementa-
tion is left as an exercise for the reader.

public interface ICreateAdminTask
{
 void Execute(string firstName, string lastName, string email, string
 password, string passwordConfirm);
 string ErrorMessage { get; }
 bool Success {get;}
}

We have cleaned up the controller and introduced a new, focused interface responsible
for performing the task. Both controller and task class remain fully testable. It is impor-
tant to keep your controllers small, and keep responsibilities clearly defined. This helps
tame your controllers. When your controllers seem to be getting unwieldy, look for

■ Data access code that could be pushed into a repository.
■ Model construction code that could be moved to a custom ModelBinder.
■ Many repository calls that might be consolidated into a single application service.
■ Complex or repetitive validation that could be done inside the domain entity

(or a separate class, such as our ICreateAdminTask class in listing 7.3).
■ Too many exit points. In listing 7.1 we noticed the duplication of the return

RedirectToAction() calls. Removing duplication is good, but the removal also
improved the readability of the code. Having too many exit points from any func-
tion is a design smell in general, and that clearly applies to controllers as well.

Now that you’ve seen how to tackle controller complexity, what about complex views?
Surely views can be made more maintainable as well.

7.2 Whipping views into shape
When building HTML, your views can get complex. With view helpers, you can sim-
plify your views and reduce duplication and complexity. For larger views, segmenting
the view into partials can simplify the view, and provide more options for rendering
with AJAX. Finally, components can be created to completely encapsulate the data
retrieval and rendering of a partial.

7.2.1 Using and creating view helpers

When you build your first link to an action with dynamic parameters, you’ll notice the
visual complexity of the code.

<a href='/sessions/view/<%= ViewData["id"] %>'>
 <%= ViewData["name"] %>

Listing 7.3 The ICreateAdminTask interface

157Whipping views into shape

Yuck. Mixing code blocks within strings is a sure way to give anyone a headache. This
is both cumbersome to read and to write, so Microsoft gave us helper methods early
on. Here is the same link, written using the Link Helpers:

<%= Html.ActionLink((string)ViewData["name"], "view", "sessions",
 new { id = (int)ViewData["id"] }, null) %>

This is much easier to write, and has the added effect of adapting to changing routes;
but it is still hard to tell exactly what each parameter means, so we prefer another for-
mat, using lambda expressions:

<%= Html.ActionLink<SessionsController>(c=>c.View((int)ViewData["id"]),
➥ (string)ViewData["name"]) %>

This representation makes it a bit more obvious which controller and action are being
used. Having type-safe lambda expressions also allows us to refactor. Refactoring tools
will detect lambda expressions and include them in refactoring changes. Don’t under-
estimate the power of this.

NOTE ActionLink<T> Microsoft decided against including the lambda expres-
sion syntax of ActionLink() in the framework. Microsoft did not feel
comfortable supporting a method with known performance issues for
high-volume sites. The technique has been refined over time and ought
to be in ASP.NET MVC version 2. This helper method and others are avail-
able in the ASP.NET MVC Futures assembly–Microsoft.Web.Mvc. This is
available on CodePlex at http://codeplex.com/aspnet.

Microsoft ships a handful of view helpers for creating forms, HTML tags, and a few
other things. There will be a number of opportunities for additional view helpers in
your applications that are specific to your domain. If you were Amazon.com, you
might create a helper method to create the product rating widget, like this:

<%= Html.ProductRatingWidget(product) %>

In Code Camp Server, let’s say that we want to have speaker links formatted a specific
way (where they link to the speaker profile and possibly have a mouse-over popup of a
picture and bio).

 To create the new view helper, we’ll create an extension method in a static class.
The class’s namespace must be referenced using the <%@ Import Namespace=… %>
directive at the top of the view or globally imported in the web.config file. Listing 7.4
shows a view helper for building speaker links. View helpers can extend HtmlHelper,
UrlHelper, or others. In this example, we are extending ViewPage.

public static class CodeCampServerHelpers
{
 public static string SpeakerLink(this ViewPage page,
 Speaker speaker)
 {
 string linkHtml = new HtmlHelper(page.ViewContext)

Listing 7.4 A view helper for building speaker links easily

http://codeplex.com/aspnet

158 CHAPTER 7 Scaling the architecture for complex sites

 .ActionLink<SpeakerController>(
 c => c.View(speaker.SpeakerKey), speaker.GetName());

 return string.Format("{0}",
 linkHtml);
 }
}

This gives us a clean and easy way to represent links to speakers within any Code
Camp Server view. It is used like this:

<%= this.SpeakerLink(speaker) %>

It may seem trivial, but the benefit is twofold: readability of your views, and the ability
to change the visual representation in one place. The more concise view helper in this
example has much less visual weight.

 Another great example of a quick and easy view helper is generating script and CSS
references. These aren’t hard to write by hand, but it’s nice to have the path calcu-
lated for you. Usage is simple, and listing 7.5 shows a full example:

<%= Html.Stylesheet("master.css") %>
<%= Html.ScriptInclude("jquery.js") %>

This will be rendered as

<link type="text/css" rel="stylesheet" href="/content/css/site.css" />
<script type="text/javascript" src="/content/js/jquery.js"></script>

public static string Stylesheet(this HtmlHelper html, string cssFile)
{
 string cssPath = cssFile.Contains("~") ? cssFile :
 "~/content/css/" + cssFile;
 string url = ResolveUrl(html, cssPath); /* defined below */
 return string.Format(@"<link type=\"text/css\"
 rel=\"stylesheet\" href=\"{0}\" />\n", url);
}

public static string ScriptInclude(this HtmlHelper html, string jsFile)
{
 string jsPath = jsFile.Contains("~") ? jsFile :
 "~/content/js/" + jsFile;
 string url = ResolveUrl(html, jsPath); /* defined below */
 return string.Format(@"<script type=\"text/javascript\"
 src=\"{0}\" ></script>\n", url);
}

public static string ResolveUrl(this HtmlHelper html,
 string relativeUrl)
{
 if (relativeUrl == null)
 return null;

 if (! relativeUrl.StartsWith("~"))

Listing 7.5 Implementations of CSS and JavaScript view helpers
 return relativeUrl;

159Whipping views into shape

 var basePath =
 html.ViewContext.HttpContext.Request.ApplicationPath;
 string url = basePath + relativeUrl.Substring(1);
 return url.Replace("//", "/");
}

The Stylesheet() helper assumes that your CSS files are located in the /content/css
directory, but you can specify a relative path such as ~/content/css/some/other/
folder/style.css, and it will work as well. The ScriptInclude() helper does the same,
but assumes your scripts are located in the /content/js directory.

 The possibilities for view helpers are endless. Most of the ones you will create will
be specific to your application. Others will be applicable to many applications. When
you are displaying date/time values, for instance, you might want them to be dis-
played relative to the current time. A label that says “Posted 2 days ago” rather than
“Posted on 9/15/2009” is much friendlier to the user.

View helpers are good when the required markup is relatively limited. When the
required HTML is more complex, view helpers generally become cumbersome and
difficult to manage. To alleviate the pain of creating complex HTML within a C# code
file, we can turn to using partials.

7.2.2 Creating partials

Often views have sections of relatively self-contained segments of HTML. You can
tighten your views by separating these segments into partials. In the same way you
break a large section of C# code into methods, you extract partials from a complex
view to simplify it. With the WebFormViewEngine, these partials are called ViewUser-
Controls, but ViewPage works just as well as a partial. Like view helpers, ViewUserCon-
trols help reduce the visual weight of a view. In addition, they help compartmentalize
the output. This turns out to be a benefit in rendering partial HTML fragments during
AJAX requests as well. We will see an example of this later in this section.

 In Code Camp Server, there is a list of sponsors on the right side of every page. We
can build a ViewUserControl to handle this segment of the page. ViewUserControls,
by default, share ViewData with the parent view. You can pass in a specific value for the
view user control’s strongly typed view data if you prefer. Listing 7.6 shows the sponsor
list ViewUserControl.

<%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl" %>
<%@ Import Namespace="MvcContrib" %>

Listing 7.6 A ViewUserControl for listing sponsors

Rob Conery’s Law
When you have an “if” statement in the view, make a helper!
<ul class="sponsors">

160 CHAPTER 7 Scaling the architecture for complex sites

<% foreach (var sponsorLevel in Enum.GetValues(typeof(SponsorLevel))) { %>

 <h2><%= sponsorLevel %> Sponsors</h2>

 <% foreach (var sponsor in
 ViewData.Get<IEnumerable<Sponsor>>(sponsorLevel.ToString())){ %>
 <%= sponsor.Name %>
 <% } %>

<% } %>

Sponsor levels are defined as

public enum SponsorLevel
{
 Platinum,
 Gold,
 Silver
}

The list loops over the three different levels of sponsors and outputs the sponsors in
each one. Notice we are using an extension method on ViewDataDictionary from
MvcContrib to provide us with friendly syntax for getting strongly typed objects out of
the bag. See more examples of this in chapter 4.

 Of course we need to load the data for this ViewUserControl in the controller;
otherwise it won’t have any data to render! We have to ensure that the controller for
this action preloads the sponsors whenever we want to render this user control. Such
an action is shown in listing 7.7.

public ActionResult Index()
{
 Conference conference = GetConference();
 Sponsor[] sponsors = GetSponsorsFor(conference);
 ViewData.Add("conference", conference);

 foreach (var level in Enum.GetNames(typeof(SponsorLevel)))
 {
 string sponsorLevel = level;
 ViewData.Add(sponsorLevel,
 conference.Sponsors.Where(
 s => s.Level.ToString() == sponsorLevel));
 }

 return View();
}

Our controller action loads up the data necessary to render the entire view. This
includes any partials like our sponsor view user control. The Index.aspx view ren-
ders the partial:

Listing 7.7 Preloading sponsors for the view component

Load the
sponsors in
ViewData

161Whipping views into shape

<div class="sponsor-list">
 <% Html.RenderPartial("_sponsors"); %>
</div>

The resulting page looks like figure 7.2.
 In this example our user control shared view data with the main view. We could

instead use a strongly typed ViewUserControl by passing the model directly into the
RenderPartial method:

<%= Html.RenderPartial("_sponsors",
 ViewData.Get<IEnumerable<Sponsor>>("Platinum")) %>

Using this technique the view user control will be constrained to the view data that
you pass in to it (via the Model property). You also have to ensure that you declare the
type of view data in the @Control directive, like so:

<%@ Control Language="C#"
 Inherits="System.Web.Mvc.ViewUserControl<IEnumerable<Sponsor>>" %>

You can probably imagine that if you have many partials and each needs its own
specific view data, your controller actions can be encumbered by the loading of

Figure 7.2 The sponsors are
loaded into ViewData by the
controller action; the partial

What’s with the underscore?
You may have noticed that we named the partial “_sponsors”. This name refers to
the user control _sponsors.ascx. The underscore is a convention borrowed from Rails
that allows you to quickly differentiate between full HTML views and partial ones. Al-
so, because our partial templates have a different extension than normal views, view
names can collide (i.e., sponsors.aspx vs. sponsors.ascx). Adopting the underscore
convention addresses this problem, but otherwise has no semantic meaning in
ASP.NET MVC.
displays it.

162 CHAPTER 7 Scaling the architecture for complex sites

seemingly unrelated data. You’d be right. Imagine if every action for every controller
in our application needed to load these sponsors and other data. This becomes seri-
ous duplication that we should notice right away. It also adds to the noise of the
action method, clouding the responsibility. Figure 7.3 shows a 10-foot glance at a
controller action whose meaning is being lost in surrounding noise.

You’ll probably notice that this data needs to be loaded into view data for every action
on this controller. We certainly shouldn’t copy and paste this code in each place, but
even different, but similar-looking method calls can get repetitive. If the code truly runs
for every action of the controller, we can move this common code to the OnActionEx-
ecuting event that we learned about in the last chapter. Listing 7.8 demonstrates this.

public void ConferenceController : Controller
{
 /* snip */

Listing 7.8 Handling common functionality for all actions of a controller

Figure 7.3 The purpose of the action is lost when loading all the required data for a view.
 protected override OnActionExecuting(

163Whipping views into shape

 ActionExecutingContext context)
 {
 Conference conference = GetConference();
 Sponsors[] sponsors = GetSponsorsFor(conference);
 ViewData.Add(sponsors);
 }
}

Now ViewData will contain the sponsors for the current conference for every action
on this controller. You can also accomplish this in a base controller class, in order to
have this code executed for every controller that inherits from it.

 Another direction you might take is to allow the partial to be in control of loading
its own data. This is helpful for scenarios when you want to package up a reusable view
segment that can be used on many views. It is accomplished through a helper method
called RenderAction in combination with partial views. These are sometimes referred
to as components.

7.2.3 Creating components

Components are the result of packaging up a controller, an action, and a view seg-
ment all in one piece. It turns out components are supported by ASP.NET MVC by
using an extension method on HtmlHelper called RenderAction. It takes as parame-
ters the controller and action that you want to render. You can render any action on
any controller, but you’ll probably want to use this in conjunction with an action that
renders a partial view. In other words, the rendered view should be a user control, not
a full page.

NOTE: Html.RenderAction is located in the MVC Futures assembly, Micro-
soft.Web.Mvc.

With this approach, the controller will simulate another full request (this time with
different route data), almost as if it was requested directly through a browser. The
component will have its own entire request pipeline, load its own data, and pass it on
to its own view. Since it is completely usable outside the containing view, these are eas-
ily packaged up and reused among many views. Listing 7.9 demonstrates rendering a
partial view.

public class SponsorsController : Controller
{
 /* snip */

 public ActionResult ListPartial(string conferenceKey)
 {
 var conference =
 _conferenceRepository.GetConference(conferenceKey);
 foreach (var level in
 Enum.GetNames(typeof(SponsorLevel))) {
 string sponsorLevel = level;

Listing 7.9 An action rendering a partial view for sponsors
 ViewData.Add(sponsorLevel,

164 CHAPTER 7 Scaling the architecture for complex sites

 conference.Sponsors.Where(
 s => s.Level.ToString() == sponsorLevel));
 }

 return View("_sponsors");
 }
}

In this action we get all of the sponsors for the conference, add them to ViewData, then
render our partial. We named it ListPartial to be clear that this action renders a par-
tial view. Note that we are using the same partial view that was outlined in listing 7.5.
This partial view will now get rendered and inserted inside the parent view:

<% Html.RenderAction<SponsorsController>(x=>x.ListPartial(conferenceKey)); %>

If you aren’t familiar with lambda expressions, then take a couple of minutes to soak it
in. Basically we are telling the method that we want it to call the ListPartial() action
on the SponsorsController class. This is like passing a delegate to the method, but
much cleaner to read (and write). We’re also getting the current conference from the
main view’s ViewData, which is needed to execute the Index() action.

Partial actions can help you segment the loading and displaying of disparate data
required to render a complete page. One caveat is that to have all this magic happen
this technique simulates another web request from the beginning of the lifecycle. If
you have deeply nested components you might notice performance hits. For this rea-
son we suggest you avoid it. Make your controllers more focused and easier to develop
and maintain.

 In listing 7.9, we showed an action that was specifically crafted for our partial use.
Sometimes it is useful to reuse actions that already load the data we need. If we
change the method signature we might be able to accommodate both. Listing 7.10
shows an action that serves both partial and full requests.

public ActionResult List(string conferenceKey, bool? partial)
{
 var conference = _conferenceRepository.GetConference(conferenceKey);

 foreach (var level in Enum.GetNames(typeof(SponsorLevel)))

Listing 7.10 A controller action that services partial views as well as full views

Lambda expressions aid in refactoring
Don’t underestimate the value of lambda expressions in your views. These are com-
piled along with the rest of your code, so if you rename an action, for example, this
code will break at compile time. Contrast this with code in your ASPX that references
classes and methods with strings. You won’t find those errors until runtime. Having
strongly typed view data references also aids in refactoring. Using a tool like JetBrains
ReSharper (http://www.jetbrains.com/resharper) will allow you to refactor code and
have it reach out to all of the views that use it as well. Very powerful, indeed.

B

 {

http://www.jetbrains.com/resharper

165Using action filters to load common data

 string sponsorLevel = level;
 ViewData.Add(sponsorLevel, conference.Sponsors.Where(
 s => s.Level.ToString() == sponsorLevel));
 }

 string viewName = "list";
 if (partial == true)
 viewName = "_sponsors";

 return View(viewName);
}

Here we declared an action parameter for an optional boolean parameter, partial B.
Because this parameter is nullable, existing calls to this action work (unless you use the
lambda helpers, in which case you need to pass nulls in). If partial is true, then it ren-
ders a partial view; otherwise it renders the default view. Now we’ve reused our action
to support partial requests as well! Sometimes this is appropriate, other times not. When
you find code with more than one responsibility in the case of a partial result, you prob-
ably need a separate action.

 Using these methods you can keep your controller actions and the associated views
organized. One method we used was overriding the OnActionExecuting event to pre-
load data. What if we needed this data to be used for actions in other controllers? For
that matter, just about any code that we write in an OnActionExecuting handler could
be reused in other controllers. To accomplish that reuse, we can leverage action filters.

7.3 Using action filters to load common data
Chapter 6 introduced you to action filters. We can leverage action filters to provide
common logic that can be executed across many controllers. Listing 7.11 shows an
action filter that loads sponsors into ViewData.

public class RequireSponsorsAttribute : ActionFilterAttribute
{
 private readonly IConferenceRepository _conferenceRepository;

Listing 7.11 A custom action filter for preloading common data

This sounds like Rails Components
This method of repurposing the request with different route values was included in
early version of Ruby on Rails called Components. In a subsequent version, Compo-
nents were removed from the Rails Core. You could opt in and continue to use them
as a separate gem/plugin; however the Rails team didn’t condone their use. Why?
Some would argue performance, but the main reason is that it turns the MVC pattern
on its head. Instead of your controllers being in control, you’re relinquishing some of
that control to the view. It’s good to learn from other communities and notice how a
pattern can be abused. In ASP.NET MVC, RenderAction can definitely be abused,
but can also be an elegant solution for complex views.
 public RequireSponsorsAttribute()

166 CHAPTER 7 Scaling the architecture for complex sites

 {
 _conferenceRepository =
 ServiceLocator.Resolve<IConferenceRepository>();
 }

 public override void OnActionExecuting(
 ActionExecutingContext filterContext)
 {
 Conference conf = GetConference(filterContext.RouteData);

 if (conf == null)
 return;

 var controller = filterContext.Controller;

 foreach(var level in
 new [] { "Platinum", "Gold", "Silver" })
 {
 var sponsorLevel =
 (SponsorLevel)Enum.Parse(typeof(SponsorLevel), level);

 controller.ViewData.Add(level,
 conf.Sponsors.Where(s => s.Level == sponsorLevel));

 }
 }

 private Conference GetConference(RouteData routeData)
 {
 string conferenceKey = routeData.Values["conferenceKey"] as string;
 if (conferenceKey == null)
 return null;

 return _conferenceRepository.GetConference(conferenceKey);
 }
}

Usage is simple. You decorate an action method with the new attribute, and it will be
executed when the action is invoked:

[RequireSponsors]
public ActionResult Index(string conferenceKey)
{
 return View();
}

You can also apply the attribute at the class level, if you want the behavior to occur for
all actions in the controller.

 As you can see, to create a custom action filter, you inherit from ActionFilter-
Attribute and override the methods for which you need to provide functionality.
Unfortunately, the framework instantiates these attributes for us when the App-
Domain starts, so we must rely on a Service Locator pattern to fetch dependencies. We
could also choose to implement our own IActionInvoker if we wanted to integrate
more deeply with an IoC container.

 The use of action filters is expressive. They are also incredibly easy to reuse among
other controllers in your application or even packaged in their own assembly to be

Cannot utilize constructor injection

Get conference
from route value

Ensure conference
exists
used on multiple projects.

167Organizing controllers into areas

7.4 Organizing controllers into areas
Organizing controllers into hierarchies can help rein in complex sets of controllers by
grouping them into logical areas. One way to accomplish this is through custom rout-
ing rules, as we saw in chapter 5. Managing this can become complex, and your route
rules can become brittle.

 How many controllers do you think you’d have if you were Amazon.com? What
about Facebook? In any complex web application, it’s easy to imagine having 50 con-
trollers along with 50 folders for their respective views. Clearly this would be a mess.

 We can borrow a feature from Castle MonoRail to solve this. In MonoRail there is a

How is code in the action filter called?
It may seem strange that the behavior defined in the attribute is called when the action
is invoked. At runtime the method is not called directly; it is passed to the Controller-
ActionInvoker, which reads the action filters that are present on the controller and
action. This is a nice extension point in the framework, as you are allowed to substitute
your own IActionInvoker if you want to customize the semantics.

During unit tests, you will be calling action methods directly. None of the behavior
defined in the action filters will be executed. Thus, you should treat your tests as
if the action filters were executed (for example, load any data into ViewData
that would have been loaded by an action filter). For things like [Authorize] or
[AcceptVerbs(HttpVerbs.POST)] you can easily test the existence of the attri-
bute with reflection. Here is a class that can help you simplify the reflection code re-
quired to get attributes.

public static class ReflectionExtensions
{
 public static TAttribute GetAttribute<TAttribute>(
 this MemberInfo member) where TAttribute : Attribute
 {
 var attributes = member.GetCustomAttributes(typeof (TAttribute),
 ➥ true);
 if (attributes != null && attributes.Length > 0)
 return (TAttribute)attributes[0];
 return null;
 }

 public static bool HasAttribute<TAttribute>(
 this MemberInfo member) where TAttribute : Attribute
 {
 return member.GetAttribute<TAttribute>() != null;
 }
}

Usage is simple:

type.GetMethod("Index").HasAttribute<AcceptVerbsAttribute>()…
concept of areas. An area is like a namespace for your controllers. Within an area,

168 CHAPTER 7 Scaling the architecture for complex sites

everything must be unique. Additionally areas provide a directory for your controllers
and views. This allows you to segment your controllers and views into logical pieces
that make sense to your application. If you were building Dell.com, you’d probably
want an area for shopping and an area for customer support. You might even want a
separate area for forums. Each of these might have its own HomeController, and areas
will allow this to happen.

 As of writing, this feature has not made it into the ASP.NET MVC Framework, but we
can add it ourselves without too much trouble through the extensibility points of
ASP.NET MVC. We will leverage the WebFormViewEngine as our starting point, as all we
want to do is change where it looks for views.

7.4.1 Capturing the area for a request

The first step is to add a required “area” route parameter to our route definitions. We
won’t give it a default value. This will force your URLs to contain an area. Listing 7.12
shows the definition.

routes.MapRoute("AreaRoute",
 "{area}/{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }
);

Next we’ll create a custom view engine for locating views.

7.4.2 Creating a view engine with support for areas

By default the WebFormViewEngine looks for views in ~/views/controllername/
viewname.aspx, and so on. When a view isn’t found, view engine returns a ViewEngine-
Result object that contains a list of the locations searched. This is why you see an infor-
mative error message when a view isn’t found. Figure 7.4 shows an example of this.

 In our view engine, we will have to continue to provide this functionality. This
means that although this seems like the simple task of telling the WebFormViewEngine
to look somewhere else, we also have to override the methods that return the View-
EngineResult. Listing 7.13 outlines our custom view engine.

public class AreaWebFormsViewEngine : WebFormViewEngine
{
 public AreaWebFormsViewEngine()
 {
 ViewLocationFormats = new[]
 {
 "~/views/{2}/{1}/{0}.aspx",
 "~/views/{2}/{1}/{0}.ascx",
 "~/views/Shared/{1}/{0}.aspx",
 "~/views/Shared/{1}/{0}.ascx",
 };

Listing 7.12 Adding area to the route definition

Listing 7.13 A custom view engine for handling areas
 MasterLocationFormats = new[]

169Organizing controllers into areas

 {
 "~/views/{1}/{0}.master",
 "~/views/Shared/{0}.master",
 "~/views/{2}/{1}/{0}.master",
 "~/views/{2}/Shared/{0}.master",
 };
 }

 public override ViewEngineResult FindPartialView(
 ControllerContext controllerContext,
 string partialViewName, bool useCache)
 {
 //snip
 }

 public override ViewEngineResult FindView(
 ControllerContext controllerContext,
 string viewName, string masterName, bool useCache)
 {
 //snip
 }
}

In our constructor, we redefine the ViewLocationFormats and MasterLocationFor-
mats arrays to accommodate an extra parameter (area). The view locations use stan-
dard string formatting placeholders. The first placeholder, {0}, denotes the action
name. The second placeholder, {1}, is the controller name and the final place-
holder, {2}, is the area name (if specified). The formatting of these strings happens
Figure 7.4 When a view isn’t found, a list of locations searched is displayed.

170 CHAPTER 7 Scaling the architecture for complex sites

in the FindPartialView and FindView methods, so we must override these as well.
Listing 7.14 shows this code.

public override ViewEngineResult FindPartialView(
 ControllerContext controllerContext,
 string partialViewName, bool useCache)
{
 if(HasArea(controllerContext))
 {
 string[] searchedLocations;

 string viewPath = FindViewWithArea(controllerContext,
 partialViewName,
 ViewLocationFormats,
 out searchedLocations);

 if(viewPath == null)
 return new ViewEngineResult(searchedLocations);

 var view = CreatePartialView(controllerContext, viewPath);
 return new ViewEngineResult(view, this);
 }

 return base.FindPartialView(controllerContext, partialViewName,
 useCache);
}

public override ViewEngineResult FindView(
 ControllerContext controllerContext,
 string viewName, string masterName, bool useCache)
{
 if (HasArea(controllerContext))
 {
 string[] searchedLoations;
 string viewPath = FindViewWithArea(controllerContext, viewName,
 ViewLocationFormats, out searchedLoations);
 if(viewPath == null)
 return new ViewEngineResult(searchedLoations);

 string masterPath = "";
 if(! string.IsNullOrEmpty(masterName))
 masterPath = FindViewWithArea(controllerContext,
 masterName,
 MasterLocationFormats,
 out searchedLoations);

 var view = CreateView(controllerContext, viewPath, masterPath);
 return new ViewEngineResult(view, this);
 }

 return base.FindView(controllerContext, viewName, masterName,
 useCache);
}

These methods are fairly similar; however the FindView method also has to deal with
the concept of a master page. If the route data contains an area, we call the

Listing 7.14 FindPartialView and FindView methods for a custom view engine

Only handle
routes with areas

Try and
find view

FindView also
handles master
pages

Find master
page

171Organizing controllers into areas

FindViewWithArea method. If this method doesn’t return a valid path, we return a
ViewEngineResult that contains a list of searched locations. If the view was found,
we call the CreateView method (provided by the base class) and return it. The
HasArea and FindViewWithArea methods are defined in listing 7.15.

private string FindViewWithArea(ControllerContext controllerContext,
 string viewName, IEnumerable<string> locationFormats,
 out string[] searchedLocations)
{
 searchedLocations = new string[0];
 string controller =
 controllerContext.RouteData.GetRequiredString("controller");
 string area = controllerContext.RouteData.GetRequiredString("area");

 var searched = new List<string>();
 foreach (var locationFormat in locationFormats)
 {
 string viewLocation = string.Format(locationFormat,
 viewName, controller, area);
 searched.Add(viewLocation);
 if(FileExists(controllerContext, viewLocation))
 {
 return viewLocation;
 }
 }

 searchedLocations = searched.ToArray();
 return null;
}

private bool HasArea(ControllerContext controllerContext)
{
 return controllerContext.RouteData.Values.ContainsKey("area");

}

7.4.3 Tying it all together

Because our controllers will now reside in a subfolder of the Controllers folder, we
have to register the additional controller namespaces:

ControllerBuilder.Current.DefaultNamespaces.Add(
 "AreasSample.Controllers.Billing");

This is required because the default ControllerBuilder does not want to reflect over
the entire assembly looking for the controller when matching a route to a specific
controller. By default, the controllers are searched only in the namespace
YourApp.Controllers. You have to add a new line for each defined area in your appli-
cation. Note that with these new namespaces added, it is possible to have multiple
HomeController classes. We also have to replace the default view engine, like so:

ViewEngines.Engines.Clear();
ViewEngines.Engines.Add(new AreaWebFormsViewEngine());

Listing 7.15 Helper methods for our custom view engine

Default value for
‘out’ parameter

Track each
location

Format each
string

Return complete
location list

172 CHAPTER 7 Scaling the architecture for complex sites

Figure 7.5 Organizing controllers and
views into an area subfolder called Billing

These can be placed next to your route defini-
tions in Application_Start.

 Now it’s time to see it all working. In the
Controllers folder, we create a new subfolder
called Billing (the area name) and place a con-
troller in it. We also create a similar Billing
folder for our views. Figure 7.5 shows the Visual
Studio solution structure.

 Now we can run our project, navigate to
http://localhost/billing/home/about and see
it working as shown in figure 7.6.

7.5 Summary
In this chapter we covered a number of tech-
niques to help your application adapt to
complexity. We talked about the single respon-
sibility principle and how you can apply it to
controllers to keep them small and focused. We
talked about centralizing the loading of
Figure 7.6 Seeing our finished result: a controller and action nested within a ‘Billing’ area

173Summary

common view data into action filters. For views we learned that we can reduce clutter by
creating view helpers. Finally we talked at length about how to create a custom view
engine that supported controller hierarchies called areas. Each of these techniques can
be applied to keep your applications’ complexity under control.

 In the next chapter, we’ll take a look at the existing features of ASP.NET that we can
still leverage in ASP.NET MVC.

Leveraging existing
 ASP.NET features
Many of us have invested heavily in ASP.NET. With ASP.NET MVC now available as an
alternative to Web Forms, is all that knowledge useless? Do we have to relearn this
platform entirely from scratch? You will be relieved to know that many of ASP.NET’s
platform features work the same way they always have. Even some Web Forms server
controls work. In this chapter we’ll cover what works in ASP.NET MVC and what
does not. By the end of the chapter, you should feel comfortable leveraging your

This chapter covers
■ Exploring the ASP.NET server controls

supported in ASP.NET MVC
■ Using cache, cookies, and session
■ Applying the tracing feature
■ Setting up health monitoring
■ Leveraging site maps
■ Configuring membership, personalization,

and localization
174

existing knowledge of ASP.NET to build robust websites with ASP.NET MVC.

175ASP.NET server controls

8.1 ASP.NET server controls
As you just learned, some ASP.NET server controls work with ASP.NET MVC, but which
ones? How can we determine if a control will work? To put it simply, any control that
depends on ViewState or generates postbacks will not be helpful. Some controls will
render, but they require a <form runat="server"> which you might not want to add.
Adding a server-side form tag will put hidden fields on the page for ViewState and
event validation. The form will also POST to the same action you are on, which is some-
times unacceptable. In this section, we’ll visit the TextBox, Menu, TreeView, and Grid-
View and see how they function. Finally, we’ll see some alternative options to the
traditional server-side controls that you can leverage in your ASP.NET MVC applications.

NOTE The code in this section is purely exploratory. Most of it contains hacks
and other workarounds that go against the intended design of an MVC web
application. The intent of this section is to see how far we can bend the
framework without breaking it. Your authors would not recommend using
these methods in a production application unless absolutely necessary.

8.1.1 The TextBox

The first control we’ll examine is the <asp:TextBox />. It renders as an <input />
HTML element. It requires a <form runat="server"> tag to function, and will be
given a generated ID (if it’s placed in a container control such as a MasterPage). This
is what we are trying to avoid! Because it’s a form field, and the form is required to be
runat="server", its function is crippled. Figure 8.1 shows it in action, while figure 8.2
shows the resulting HTML.

 We can see that the rendered HTML contains much we did not ask for. In addition,
notice that the form tag has an action attribute that we did not specify. This will pre-
vent the form from submitting to an action that we request.

 We can apply a quick trick to avoid the server-side form requirement. In the Page class
there is a method you can override called VerifyRenderingInServerForm(Control
control). If we override this method we can prevent the error that results when using
a control outside of the server form. Because there is no code-behind, the only way to
accomplish this is to add a server-side script block in your view directly, like this:

Figure 8.1 The
TextBox renders

correctly.

http://nhibernate.org
http://nhibernate.org

176 CHAPTER 8 Leveraging existing ASP.NET features

<script language="C#" runat="server">
 public override void VerifyRenderingInServerForm(Control control)
 {
 }
</script>

Now you can use the TextBox (or any other control) in your own form tag, to avoid
having the ViewState and EventValidation hidden fields generated for you.

 Because a textbox in ASP.NET MVC is as simple as <%= Html.TextBox("name") %>,
the TextBox server control offers no compelling functionality—only baggage—for
your ASP.NET MVC views. ASP.NET controls are also only usable with the WebFormView-
Engine. Other view engines cannot utilize them. Now that we’ve seen the TextBox,
what about other controls?

8.1.2 Other common controls

We can see from our simple text box example that most ASP.NET Web Forms input
controls have little to offer. However, some controls have semifunctional rendered
output. One example is the <asp:Menu /> control. It does not require postbacks if you
specify a NavigateUrl for each of the MenuItems, and it does not require ViewState
(though it does use it to store the last selected item). It simply renders HTML and
JavaScript to allow elements to expand and hide on mouse events. Again, a server-side
form tag is required and, unlike the TextBox, you should not remove it. Doing so will
prevent the JavaScript that controls the hiding/showing of the items from being ren-
dered. Also, Menu renders a nasty pile of HTML tables to display properly. We have
come to expect this from Web Forms controls. We could choose to fix the poor
markup with ASP.NET Control Adapters; however, the benefits will probably not be
worth the trouble. Figure 8.3 demonstrates the menu control working on an MVC

Figure 8.2
The resulting HTML
for the TextBox is
less than desirable.
view. The rendered markup is shown in figure 8.4.

177ASP.NET server controls

 The <asp:Menu /> control renders,
and the JavaScript open/close behavior
functions properly (as long as you have
a server-side form tag). However, the
links without a NavigateUrl property
depend on the postback model of Web
Forms. We could conjure up some
JavaScript to alter this behavior; doing so
would just add to the mess. Additionally,
take a look at the rendered markup in
figure 8.4. Hard-coded styles, deeply
nested tables, and highly obtrusive
JavaScript make this tiny menu render
nothing short of a headache.

NOTE This type of markup is a con-
stant reminder of why we want
more control over our HTML!
One of the original strengths of
server controls is that they can
modify the markup rendered based on a browser. This was of critical impor-
tance in 2002 when the popular browsers treated markup in a very different
way. This varied rendering was more important than control over the markup.
It was worth having to deal with generated markup and ClientIDs for the sake
of cross-browser compatibility. Fast forward to 2009/2010. The major browsers
now are on board with XHTML; the same markup works well in various brows-
ers. Now, the architectural trade-offs are different. The need to compromise
on messy markup no longer exists. In chapter 13, we’ll see how to leverage cli-
ent-side scripting in a clean manner. For now, let’s continue on with our explo-
ration of ASP.NET server controls.

Figure 8.4 The horrific markup that is rendered by the Menu control. Stay tuned for a better way.

Figure 8.3 The menu control renders okay in
Firefox and IE. Unfortunately it depends on a server-
side form tag. JavaScript surgery would be needed
to make it function properly. WebKit-based
browsers (Chrome and Safari) have problems with
the JavaScript used to pop open the menus.

http://logging.apache.org/log4net/index.html
http://logging.apache.org/log4net/index.html

178 CHAPTER 8 Leveraging existing ASP.NET features

It would be hard to live without these two controls: <asp:TreeView /> and the
<asp:Calendar />. The TreeView looks okay, but the nodes are postback links. The
visual aspect works just fine, however. The calendar relies heavily on the postback
model for navigation, so unfortunately it does not function in ASP.NET MVC except
when viewing a single month. We still need tree views. We still need calendars. With
ASP.NET MVC, we’ll tend to use more client-side UI functionality, such as that found in
jQuery UI, which has a rich JavaScript calendar and more.

 I have so far neglected the big daddy of ASP.NET server controls. Yes, I am talking
about the GridView. The GridView is an interesting case, because it has so many dif-
ferent forms. At its simplest, the GridView is just an HTML table. It’s great for display-
ing tabular data. If we don’t require any postback, then it should work, right? It does,
but there are a few gotchas along the way.

8.1.3 The GridView

The first issue is that there is no declarative way to bind the GridView to data coming
from ViewData. You can employ data binding code directly in the view markup, inside
<% %> code blocks as listing 8.1 demonstrates. This type of code should send bad vibes
up your spine, but the point is that it’s possible.

<%
 grid1.DataSource = Model;
 grid1.DataBind();
%>

You also have the option of using the DataSource controls such as ObjectDataSource,
SqlDataSource, and XmlDataSource. Of course, in doing this you have completely cir-
cumvented the MVC pattern and placed all of your data access directly in the view! Fig-
ure 8.5 illustrates the grid rendering properly.

 Figure 8.5 shows our newly bound GridView in action. Unfortunately, that is all you
get, because none of the advanced features of the GridView will work. No sorting, pag-
ing, editing, or selecting. Because of this, it’s of limited utility, and will probably only
aid you during prototyping and demos.

Listing 8.1 Binding a GridView from the view itself

Figure 8.5

The GridView renders properly.

179State management

All is not lost, however. In ASP.NET MVC you can achieve the Holy Grail of an editable
data grid, complete with sorting, paging, and editing, when you structure it in a differ-
ent way.

8.1.4 Where do I get the good stuff?

The examples I have shown here might make ASP.NET MVC seem to taste sour.
Before you spit it out and decide that you do not want to live without your TreeView
and Menu controls, consider this: many thousands of samples online show how you
can achieve the same functionality with a little bit of JavaScript and CSS. These are
freely available solutions that many other platforms leverage. With ASP.NET MVC we
can do the same, and with minimal friction in applying them. Often, these solutions
are so simple they make the declarative ASP.NET controls look like sledgehammers.
Here are a few references for platform-agnostic solutions to tree views, menus, and
tabs using jQuery.

■ jQuery Treeview example: http://jquery.bassistance.de/treeview/demo/
■ jQuery Menu example: http://jdsharp.us/jQuery/plugins/jdMenu/
■ jQuery Tabs example: http://stilbuero.de/jquery/tabs/

Although ASP.NET MVC does not gain much from server controls—as you have clearly
seen in these examples—other aspects of ASP.NET function exactly as they did in Web
Forms. We can leverage the ASP.NET platform in the same way as before. The first
topic we’ll investigate is state management.

8.2 State management
One of ASP.NET’s strong points is state management. ASP.NET has excellent support
for caching, cookies, and user sessions. In ASP.NET MVC we can leverage these as we
have in the past. State management refers to the storage and retrieval of state. As we all
know, the web is a stateless environment, so special techniques have to be used to
retain data about the user’s current state and recent activity. Session state and cookie
storage address these concerns. Sometimes it’s helpful to store per-user data that lives
only for a single web request. Request storage is useful in these scenarios. Frequent
trips to a back-end data store can yield horrible performance under heavy load.
ASP.NET’s built-in support for caching can help keep a popular application running
efficiently. We’ll examine the ASP.NET Cache first.

8.2.1 Caching

Caching is immensely important in today’s web applications. A website of signifi-
cant size or traffic can drastically reduce the amount of database access by effec-
tive use of caching. With ASP.NET we can also cache rendered HTML, which saves
CPU resources on the server. Done properly, it’s one of the best tools in your belt
to cope with severe load. Done poorly, your efforts will be detrimental to your web-
site’s performance.

http://jquery.bassistance.de/treeview/demo/
http://jdsharp.us/jQuery/plugins/jdMenu/
http://stilbuero.de/jquery/tabs/

180 CHAPTER 8 Leveraging existing ASP.NET features

NOTE Caching tips and strategies are out of the scope of this book. Correctly
applying caching strategies can be critical to website performance. We’ll
cover how caching is applied in ASP.NET MVC. If you want to read more
about advanced caching, see Professional ASP.NET 3.5:

http://www.amazon.com/Professional-ASP-NET-3-5-VB-Programmer/
dp/0470187573

In ASP.NET Web Forms, caching frequently accessed sets of data is accomplished by
using the Cache object. This object has a hard dependency on HttpRuntime which
impedes testing. For ASP.NET MVC, if we want to ensure testability, we cannot use this
static reference. We can access the cache via ControllerContext.HttpContext.
Cache, but this class is sealed, so we cannot create a mock object for use in tests. This
inherent lack of testability is a remnant of the classic ASP.NET platform, which was not
built with testability in mind. To cope with this, we can wrap the cache in our own
interface. Listings 8.2 and 8.3 demonstrate this, while listing 8.4 shows the test.

public interface ICache
{
 T Get<T>(string key);
 void Add(string key, object value);
 bool Exists(string key);
}

public class AspNetCache : ICache
{
 public T Get<T>(string key)
 {
 return (T)HttpContext.Current.Cache[key];
 }

 public void Add(string key, object value)
 {
 HttpContext.Current.Cache.Insert(key, value);
 }

 public bool Exists(string key)
 {
 return HttpContext.Current.Cache.Get(key) != null;
 }
}

private ICache _cache;

public HomeController(ICache cache)
{
 _cache = cache;
}

public ActionResult CacheTest()
{

Listing 8.2 Wrapping the cache in our own, testable interface

Listing 8.3 Using the cache wrapper in our controllers
 const string key = "test";

http://www.amazon.com/Professional-ASP-NET-3-5-VB-Programmer/dp/0470187573
http://www.amazon.com/Professional-ASP-NET-3-5-VB-Programmer/dp/0470187573

181State management

 if(!_cache.Exists(key))
 _cache.Add(key, "value");

 var message = _cache.Get<string>(key);

 return Content(message);
}

[Test]
public void CacheTest()
{
 var fakeCache = MockRepository.GenerateStub<ICache>();
 var controller = new HomeController(fakeCache);

 fakeCache.Stub(x => x.Exists("test")).Return(false);

 controller.CacheTest();

 fakeCache.AssertWasCalled(x => x.Add("test", "value"));
 fakeCache.AssertWasCalled(x => x.Get<string>("test"));
}

Wrapping the cache in our interface allowed us to write code decoupled from a spe-
cific implementation. It also aided us during testing. If we did not abstract this con-
cept, our controller would remain untestable.

NOTE It’s generally not a recommended practice to specify your data caching
strategy directly in your controllers. Application services can easily use
this ICache interface in combination with a repository or service to hide
this from you. Then your controller has a dependency only on the ser-
vice, and its actions become much more concise. Always keep your con-
trollers tight and focused.

As you might expect, cache dependencies (such as a file dependency
or SQL 2005 table dependency) and all other features work just as they
did in ASP.NET.

Output caching is another powerful feature of ASP.NET. It allows you to take the ren-
dered HTML of a page or user control, cache it on the server, and return it directly for
future requests. This not only eliminates the overhead in getting data, but also in ren-
dering the page. Subsequent requests immediately return the cached HTML. In
ASP.NET MVC, we have a slightly different construct for output caching. Listing 8.5
demonstrates how to enable output caching for a controller action.

[OutputCache(Duration=100, VaryByParam = "*")]
public ActionResult CurrentTime()
{
 var now = DateTime.Now;
 ViewData["time"] = now.ToLongTimeString();
 return View();

Listing 8.4 Testing an action that accesses the cache

Listing 8.5 Caching the result of an action for 100 seconds

Set up controller
with fake cache

Invoke action
on controller

Assert
methods
called on
cache

VaryByParam
is required
}

http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx
http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx

182 CHAPTER 8 Leveraging existing ASP.NET features

Executing this action gives us the page shown in figure 8.6.

The HTML that makes up the page in figure 8.6 is cached on the server and returned
for subsequent request for up to 100 seconds (the duration we specified in the Out-
putCache attribute in listing 8.5). Of course we can vary the cache based on a number
of criteria, such as a specific HTTP Header value, or a query string value. All of the fea-
tures that worked with output caching in Web Forms also work in ASP.NET MVC.

 A limitation of the OutputCache attribute is that it only works at the action level. If
you render user controls on your main view with Html.RenderAction("someAction")
the cached version of that action will be used for the partial HTML snippet. This is an
excellent way of achieving page fragment caching. If instead you use Html.Render-
Partial(), the entire HTML document would have to be cached at the root action
level. StackOverflow.com is a great example of this. The home page has many pieces
of data on it, some of which are unique to the user logged in. See figure 8.7 for an
example. Under heavy load, it may make sense to output-cache the action for the
home page; however the per-user content should not be included in this cache. Here,

Figure 8.6
Refreshing the page
gives us the same
result for up to 100
seconds.

Figure 8.7
StackOverflow.com
is a good example of
how you can use
output caching in
combination with
Html.Render-
Action() to
cache different
regions of the page.
On the home page,
some sections can
be cached globally,
and other sections
are rendered per

user.

183State management

Html.RenderAction can be used for the per-user sections and the rest of the page can
safely be cached.

 Now that we have examined how to leverage ASP.NET cache in our apps, we can
move on to session state.

8.2.2 Session state

In a web application, session state refers to temporary data (stored on the web server)
that exists per user. An excellent example of this is a user’s shopping cart. Each user
gets his own shopping cart, which lives as long as the user is online. The data in the
session typically expires after 30 minutes of inactivity.

 Similar to Cache, Session depends deeply on HttpContext. Luckily, the ASP.NET
MVC Framework has wrapped this object for us, in HttpSessionStateBase. This is an
abstract base class that mirrors the public API of the real HttpSessionState class. We
can now easily replace this with a mock object in our unit tests. Listing 8.6 contains an
action that uses session state, and the respective test is shown in listing 8.7 with the use
of the Rhino Mocks dynamic mocking library (note the calls to Expect).

public ActionResult ViewCart()
{
 const string key = "shopping_cart";
 if(Session[key] == null)
 Session.Add(key, new Cart());

 var cart = (Cart) Session[key];

 return View(cart);
}

[Test]
public void SessionTest()
{
 var controller = new HomeController();

 var httpContext = MockRepository.GenerateStub<HttpContextBase>();
 var mockSession = MockRepository.GenerateMock<HttpSessionStateBase>();
 httpContext.Stub(x => x.Session)
 .Return(mockSession).Repeat.Any();

 const string key = "shopping_cart";
 mockSession.Expect(x => x[key]).Return(null);
 mockSession.Expect(x => x.Add(null, null)).IgnoreArguments();
 mockSession.Expect(x => x[key]).Return(new Cart());

 controller.ControllerContext =
 new ControllerContext(httpContext, new RouteData(), controller);

 controller.ViewCart();

 mockSession.VerifyAllExpectations();

Listing 8.6 An action that uses Session

Listing 8.7 Testing controllers that use Session

Set up fake
session

Invoke the action

Verify expected

} methods were called

184 CHAPTER 8 Leveraging existing ASP.NET features

Session is retrieved through the controller’s HttpContext property (which in turn
comes from ControllerContext.HttpContext), so we must create a stub for it to
return our mocked session object. Sadly, the only way you would know this is by view-
ing the source or by using Reflector. Once we have the test double in place, we can set
it up with canned data that the action method will actually use. The setting-up-the-
fake-session code could be placed inside a test helper class so that you have a cleaner
test. Something like this would be much nicer:

var controllerContext = new FakeControllerContext();
var mockSession = controllercontext.HttpContext.Session;

mockSession.Stub(...);

The other form of user-specific data storage lies in HTTP cookies, which we’ll examine
next.

8.2.3 Cookies

Cookies store tiny bits of information in the client’s browser. They can be useful to
track information, such as where a user has been. By default, the user’s session ID is
stored in a cookie. It’s important to not entirely rely on the contents of a cookie.
Cookies can be disabled by the user, and malicious users may even attempt to tamper
with the data.

 In ASP.NET Web Forms, you would add cookies like this:

Response.Cookies.Add(new HttpCookie("locale", "en-US"));

That API works going forward in ASP.NET MVC. The only difference is that the
Response property of the controller is HttpResponseBase, rather than the sealed
HttpResponse class in Web Forms. Testing actions that use cookies is similar to the
method we used to test against the Cache or Session in previous sections.

8.2.4 Request storage

Sometimes you require data to be stored for a single web request only. Because indi-
vidual requests are served by threads, it’s tempting to put a [ThreadStatic] attribute
on a piece of data and expect it to work. However, ASP.NET occasionally reuses threads
for other requests, so this is a poor choice for ASP.NET if you want to avoid data mixing
with requests from two separate users.

NHibernate Session-per-Request pattern
If you’re familiar with NHibernate (http://nhibernate.org) you may be familiar with the
Session-per-Request pattern. It refers to the lifecycle of the NHibernate Session ob-
ject, and in web environments it is common to open the session at the beginning of
the request, and close it at the end. Throughout the request, the current session is
available in HttpContext.Items. There is an example of this in chapter 13 under
the NHibernate recipe.

http://nhibernate.org

185Tracing and debugging

You access request storage through HttpContext.Items. It’s guaranteed to be isolated
from other concurrent requests. This works in ASP.NET MVC; however, the actual
HttpContext property of the Controller class is of type HttpContextBase. This
ensures that our controllers remain testable because you can mock HttpContext-
Base easily.

 We have examined each of the ways of storing and retrieving data in ASP.NET and how
they work with MVC. Next, we’ll investigate the tracing and debugging experience.

8.3 Tracing and debugging
Tracing and debugging work much as they do with Web Forms. The same techniques
for placing breakpoints and stepping through code with Visual Studio apply. With
tracing, however, there is a slightly different story.

 Configuring tracing is done with the web.config. The configuration shown in list-
ing 8.8 will enable tracing for an ASP.NET MVC application. The effect on the site is
shown on figure 8.8.

<system.web>
 <trace enabled="true" pageOutput="true" localOnly="true" />
</system.web>

With that in place, we can browse our site and see the tracing information appended
to the bottom.

 You do not have to show the information at the bottom of every page. You can also
see the trace information for each request using the Trace.axd handler, as seen in fig-
ure 8.9.

 The only part of this story that does not function similarly to Web Forms is writing
to the trace. There is no Trace.Write() in your controllers. We’ll see why next.

Listing 8.8 Enabling tracing with the web.config
Figure 8.8 Tracing information appended to the bottom of our page

186 CHAPTER 8 Leveraging existing ASP.NET features

8.3.1 TraceContext

When you called Trace.Write() in Web Forms, you were interacting with the Trace-
Context class. This exists on your ViewPage in ASP.NET MVC; however, this is not
where you would want to write tracing statements! By the time you have passed the
baton over to the view, there is no logic there that you would need to trace. Instead,
you would like to trace the logic embedded in our controllers.

 You might try to leverage the TraceContext class in your controller; however, these
statements won’t ever make their way to the list of messages in the trace log (on your
page or on Trace.axd). Instead, you can leverage System.Diagnostics.Trace and set
up your own TraceListeners to inspect the activity in your controllers. Alternatively,
you can leverage a more mature logging framework such as log4net or NLog:

■ log4net: http://logging.apache.org/log4net/index.html
■ NLog: http://www.nlog-project.org/

You debug ASP.NET MVC applications just as you would any .NET application. Tracing,
however, does not offer as much for MVC. Instead, you can lean on the built-in
TraceListeners in .NET, or utilize a good logging library like those mentioned earlier.
Another aspect of error logging is called health monitoring.

8.3.2 Health monitoring

Health monitoring is related to tracing and debugging. ASP.NET 2.0 introduced a set
of providers for reporting on events occurring in an ASP.NET application. The
machine.config on your server (or local machine) defines some policies for reporting
the health of your applications. You have probably noticed before that you receive an

Figure 8.9 Viewing the tracing info for each request using the Trace.axd HttpHandler

http://logging.apache.org/log4net/index.html
http://www.nlog-project.org/

187Implementing personalization and localization

error in the computer’s event log when an unhandled exception occurs in your
ASP.NET applications. This is an example of one of those providers. Health monitor-
ing continues to function in the same way in ASP.NET MVC.

8.4 Implementing personalization and localization
Often our applications need to display different information depending on the user.
Sometimes this data is personal, such as your name or the customized look and feel of
the site. Other times this might be displaying messages in a user’s native language,
depending on the locale on their browser.

 ASP.NET personalization and localization work similarly in ASP.NET MVC, but we’ll
look at a couple of examples to highlight the difference in usage.

8.4.1 Leveraging ASP.NET personalization

ASP.NET personalization requires database objects to be created. You can create these
on your database by running a Visual Studio 2008 command prompt and typing

C:\> aspnet_regsql -S <server> -E -A all

This will install database support for profiles, roles, membership, and personalization
on the server specified. To define the type of data you want to store for your users, you
have to define it in the web.config. Listing 8.9 shows a sample configuration.

<system.web>
 ...
 <anonymousIdentification enabled="true"/>
 <profile>
 <properties>
 <add name="NickName" type="System.String" allowAnonymous="true" />
 <add name="Age" type="System.Int32" allowAnonymous="true"/>
 </properties>
 ...
 </profile>
 ...
</system.web>

We have identified two properties that we want to track for our users. In a Web
Forms application, you would set these values to controls on your page, from directly
accessing the profile API from your code-behind. The only difference in ASP.NET
MVC is that we need to do this in our controller. When adding items to ViewData, we
can choose between explicitly adding each property into ViewData directly, and
passing the entire profile object. Your preference depends on how complex your
profile properties are. Listing 8.10 shows a controller action that passes profile data
to the view. The view is shown in listing 8.11, while the edit form is displayed in
listing 8.12.

Listing 8.9 Setting up the personalization properties

188 CHAPTER 8 Leveraging existing ASP.NET features

public class ProfileController : Controller
{
 public ActionResult My()
 {
 var profile = ControllerContext.HttpContext.Profile;
 return View(profile);
 }
}

<h3>Your Profile:</h3>
Nick Name: <%= Model["NickName"] %>

Age: <%= Model["Age"] %>

<%= Html.ActionLink("Edit my Profile", "edit") %>

<h3>Edit my profile</h3>
<% using(Html.BeginForm("save", "profile")) {%>
 <label for="nickName">Nick Name:</label> <%= Html.TextBox("nickName")%>

 <label for="age">Age:</label> <%= Html.TextBox("age") %>

 <input type="submit" value="save" />
<% } %>

Luckily, the Profile property is of type ProfileBase, and is an abstract base class.
This means we can easily test actions that utilize profile data. Setting the profile data
is basically the opposite operation: take form control values and put them on the pro-
file dictionary.

8.4.2 Leveraging ASP.NET localization

With the power of the internet, the world can instantly become users of our sites. It
would be naïve to believe that English would be sufficient for the entire world. In
some cases, providing multilanguage/culture support can increase sales or reach and
make your site much more popular (and profitable!).

 .NET gave us resource files (.resx) that can house the translations for text or
images that you would display on the screen. You would create a localized version of
this resource file for each culture you wanted to support. In addition, localization con-
trols how numbers are formatted on the screen, and whether the text reads left-to-
right or right-to-left.

 In .NET, there is the concept of global and local resources. Global resources are
pieces of data that your entire site might need, such as the title of the site, whereas
local resources refer to the content specific to one page of your site. In ASP.NET MVC,
this means that your views will be able to reference local resources, but your control-
lers will have access only to global resources.

Listing 8.10 Passing the profile dictionary to the view

Listing 8.11 Displaying profile data on the view

Listing 8.12 Editing the profile data

189Implementing personalization and localization

 Let’s start with an example. We have
taken the ASP.NET MVC starter template
and added a global resources direc-
tory (right-click, add ASP.NET folder,
App_Global_Resources). We have also
added a resource file called Site.

resx. Figure 8.10 shows the solution
and figure 8.11 shows the resources we
have created.

 As you can see in figure 8.11, we have
pulled out some of the text you will find
on the sample project. We have also
changed the default HomeController to
pull these resource strings out, depend-
ing on the current culture. Listing 8.13
demonstrates this.

 We have used a simple helper
method to make it easier to pull out
strings from the resource file. We have

public class HomeController : Controller
{
 public ActionResult Index()
 {
 ViewData["Title"] = GetResource("PageTitle");
 ViewData["Message"] = GetResource("WelcomeMessage");

 return View();
 }

 private string GetResource(string key)
 {
 var httpContext = ControllerContext.HttpContext;
 var culture = Thread.CurrentThread.CurrentUICulture;
 return (string)httpContext.GetGlobalResourceObject("Site", key,
 culture);
 }
}

Listing 8.13 Pulling strings out of the resource file based on the current culture

Figure 8.10 Adding an App_GlobalResource
directory and a default resource file to the project
Figure 8.11 Our site’s resources

190 CHAPTER 8 Leveraging existing ASP.NET features

only defined one, so that is all the users will
see. Let’s add another. We’ll add one for the
es-ES culture—Spanish (Spain). To do this,
add another resource file in App_Global-
Resources, but this time we’ll append the
culture string to the filename (in this case
Site.es-ES.resx). Figure 8.12 shows the con-
tents of this file, and figure 8.13 shows the
Solution Explorer view.

 We have now added a second resource file
that contains the same keys, but the values
are localized to the culture in question (in
this case Spanish). Let’s see what the site
looks like in figure 8.14 when we run it.

 How did it know which culture we wanted
to display? How do Spanish-speaking users
see the localized version? In .NET, the cur-
rent executing thread has a property called

Figure 8.12 A localized resource file for Spanish (es-ES)

Figure 8.14 Seeing the strings from the resource file live on the site. This browser is Mozilla

Figure 8.13 Our new resource file is added to
the App_GlobalResources folder.
Firefox with a custom skin.

191Implementing personalization and localization

CurrentUICulture. We can set this programmatically, but most web browsers will do the
work for us provided we allow them. Here we are using Mozilla Firefox, though all major
browsers will allow you to do this. We have gone to Tools > Options > Content (tab) >
Languages. Here you can choose your language preference. Figure 8.15 shows that we
have added Spanish (es-ES) to the list and moved it to the top. You will also need the
web.config setting shown in listing 8.14.

<system.web>
 ...
 <globalization enableClientBasedCulture="true" uiCulture="auto"

 culture="auto" />
</system.web>

After doing this, our browser will submit the culture we prefer to the server. The server
reads this and returns the localized resources (if they are available, of course). Fig-
ure 8.16 shows that after refreshing the browser, we are greeted with Spanish messages!

 The content region of the page has also been localized. To add local resources for
a single page, which are accessible on the view, add an App_LocalResources folder
next to the .aspx files. Figure 8.17 shows this for our index view.

 It isn’t as simple as this. Remember, however, that .aspx views reside in the Views
folder because of convention. Due to the highly customizable nature of ASP.NET MVC,
there’s nothing to stop you from having your views be served from the database, or
from another location on disk. This complicates the notion of a “local” resource
because “local” is now dynamic!

 Luckily Matt Hawley has discovered this (the hard way) and posted his findings on
his blog. You can find the post online at http://blog.eworldui.net/post/2008/10/ASP-
NET-MVC-Simplified-Localization-via-ViewEngines.aspx. His solution involves deriving

Listing 8.14 Enabling autoculture selection from the browser

Figure 8.15 Setting our preferred
language to Spanish in Firefox

http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx
http://blog.eworldui.net/post/2008/10/ASPNET-MVC-Simplified-Localization-via-ViewEngines.aspx

192 CHAPTER 8 Leveraging existing ASP.NET features

from the standard WebFormViewEngine to cre-
ate a LocalizableWebFormViewEngine. This
derived class stores the view path in view data
for each view, so when the helper methods
invoked from the view require a path, it can
be taken directly from ViewData. We’ll leave
the rest of the details to Matt’s excellent post.

 In these examples, we saw the basic
resource API for .NET. In Web Forms, there
are additional features in which server con-
trols can declaratively display resources from
the current culture. In ASP.NET MVC, none of
these exist yet. Fortunately it would be trivial
to create additional view helpers to accom-
plish this.

 Localization is an enormous topic, and
unfortunately few developers pay attention to
it. We have just scratched the surface in this
section. If you are building a site that will
have users from different countries, be sure
to look into localization.

8.5 Implementing ASP.NET site maps
The last feature we’ll visit in this section is the ASP.NET site map. A site map allows you
to define the hierarchy of your site in an XML file (called Web.sitemap) or another
data source of your choosing. On your pages you can include a SitemapPath control

Figure 8.16 Viewing the site with a different preferred language setting in the browser

Figure 8.17 Adding local resources for the
Index view

193Implementing ASP.NET site maps

that displays breadcrumb navigation to the users, allowing them to navigate back to
higher level pages.

 In ASP.NET MVC, site maps work surprisingly well. You define a sample
Web.sitemap file, such as that in listing 8.15. This defines the URL hierarchy of the
site. You can create a site map file by choosing “Sitemap” on the Add New Item dialog
of the project.

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="/home" title="Home" description="">
 <siteMapNode url="/home/index" title="Index" description="" />
 <siteMapNode url="/home/about" title="About Us" description="" />
 <siteMapNode url="/home/contact" title="Contact Us"
 description="" />
 <siteMapNode url="/home/legal" title="Legal" >
 <siteMapNode url="/home/legal?section=privacy"
 title="Privacy Policy" />
 <siteMapNode url="/home/legal?section=terms"
 title="Terms & Conditions" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Now that ASP.NET knows about our site structure, we can display the current bread-
crumb path to the user, using the standard SiteMapPath server control from Web
Forms (listing 8.16). Luckily, this control does not require any server-side form tag
(nor ViewState or post backs). It renders just as you would expect it to. Figure 8.18
shows the result running in the browser.

<div id="main">
 <asp:SiteMapPath ID="smp" runat="server" />
 <asp:ContentPlaceHolder ID="MainContent" runat="server" />
</div>

We have placed this control in the master page, so every page of our site will get the
current site map path displayed at the top, above the content. You can see the result in
figure 8.18.

 As you can see, our breadcrumb links look good and they help the user navigate
back through the higher layers of the site hierarchy. There is only one facet of the site
map story that does not work well. Can you guess what it is? That’s right: it’s those
pesky hard-coded URLs! If we change our routing structure, this SiteMapPath control
will display the wrong links, and our site will be broken. Take care when restructuring
URLs in your site.

 We can choose to live with this and update it when our routes change (which is actu-
ally reasonable, because routes aren’t expected to change often), or we can implement

Listing 8.15 Defining our site structure in Web.sitemap

Listing 8.16 Using the server control to display our current path in the site map

194 CHAPTER 8 Leveraging existing ASP.NET features

our own custom SitemapProvider; one that knows about the controllers, actions, and
routes in our web application. This is beyond the scope of this book, but can be left as
an exercise you might want to try.

8.6 Summary
As you have seen in this chapter, some features we have used in the past take tweaking
to function. Others have limitations or do not work at all. But you can harness the
core features of the ASP.NET runtime to your advantage. We hope this chapter has
helped you better distinguish between the Web Forms world and the ASP.NET MVC
world. Many of the examples in this chapter were purely exploratory, such as the
ASP.NET server controls. The section on ASP.NET Caching demonstrated how you can
cope with some of the APIs that are not testable out of the box.

 We have intentionally skipped over the ASP.NET AJAX feature. Where does AJAX fit
into all of this? That happens to be the topic of our next chapter. Read on.

Figure 8.18 Displaying the site map breadcrumbs on the master page

AJAX in ASP.NET MVC
AJAX, or asynchronous JavaScript and XML, is a term coined by Jesse James Garret
describing a clever new technique to make web applications more dynamic. AJAX
introduced a new era of web applications. It’s a technique that uses the browser’s
JavaScript capability to send a request to the server asynchronously. This enables
applications to become richer and more user-friendly by updating small sections of
the page without requiring a brutal full-page refresh. In today’s web, the vast major-
ity of major websites have leveraged this technique to their advantage. Users are
demanding this type of rich, seamless interaction with websites. You aren’t going to
let them down, are you?

 AJAX is definitely here to stay. With ASP.NET Web Forms, developers have disagreed
on how to best apply AJAX to their sites. Many popular code samples and AJAX libraries
seemed to fit well for the PHP and Ruby on Rails examples, but they did not translate

This chapter covers
■ Discussing our view on AJAX
■ Reviewing difficulties with Web Forms
■ Getting to know JavaScript libraries
■ Performing simple HTML replacement
■ Using JSON and XML responses
195

as well to the ASP.NET platform. This was mainly due to the page-centric request

http://docs.jquery.com
http://docs.jquery.com
http://docs.jquery.com

196 CHAPTER 9 AJAX in ASP.NET MVC

lifecycle and the lack of control over HTML DOM identifiers. A Web Forms–friendly
framework called ASP.NET AJAX was released by Microsoft in early 2007 to moderate
success. Many developers found it overly complicated and cumbersome. ASP.NET
AJAX and its associated control toolkit depend deeply on the postback behavior of Web
Forms. For ASP.NET MVC applications there are more fitting frameworks available.

 In this chapter we’ll examine how the AJAX technique is applied to ASP.NET MVC
in a less complicated and more natural way than with Web Forms. You’ll see how to
leverage an increasingly popular, lightweight JavaScript library called jQuery. You’ll
learn a few types of methods commonly used with AJAX, along with the strengths and
weaknesses of each. Although an introduction to AJAX is provided, you’ll be best
served by at least an introductory knowledge of the subject.

9.1 Diving into AJAX with an example
An example is the best way to describe how AJAX works. We’ll create a simple HTML
page that has a button on it. When the button is clicked, an AJAX request will be sent
to the server. The response will be a simple message, which we’ll display to the user.
No browser refresh will occur. Take a look at our HTML page in listing 9.1

<html>
 <head>
 <title>Ajax Example 1</title>
 <script type="text/javascript" src="ajax-example1.js"></script>
 </head>

 <body>
 <h1>Click the button to see the message…</h1>
 <input type="button" value="Whack! " onclick="get_message();" />

 <div id="result"></div>
 </body>
<html>

This is a basic HTML page with a button on it. When the user clicks the button, the
server should get the message without refreshing the page, and display it to the user.
Listing 9.2 shows the contents of the referenced JavaScript:

function get_message()
{
 var xhr = getXmlHttpRequest ();

 xhr.open("GET", "get_message.html", true);

 xhr.onreadystatechange = function() {

 if(xhr.readyState != 4) return;

 document.getElementById('result').innerHTML = xhr.responseText;

Listing 9.1 A simple HTML page

Listing 9.2 Simple JavaScript file

Display
result here

Issue an Ajax
request

Get XML HTTP
Request object

Prepare request

Set up callback function

ReadyState 4 means we’re done
 }; Populate page with result

197Diving into AJAX with an example

 xhr.send(null);
}

function getXmlHttpRequest()
{
 var xhr;
 if(typeof ActiveXObject != 'undefined'){

 try {
 xhr = new ActiveXObject("Msxml2.XMLHTTP");
 } catch(e) {
 xhr = new ActiveXObject("Microsoft.XMLHTTP");
 }

 } else if(XMLHttpRequest) {
 xhr = new XMLHttpRequest();
 } else {
 alert("Sorry, your browser doesn't support Ajax");
 }

 return xhr;
}

The resulting page looks like figure 9.1.
 If you’re thinking that the previous example contains a lot of code for a simple

AJAX request, you’re not alone. The simple act of creating the XMLHttpRequest object
isn’t consistent across browsers. We’ll see how to clean that up later. First, let’s see how
this example would be applied in ASP.NET Web Forms.

Fire AJAX request

Check for IE
implementation(s)

This works for
other browsers

Figure 9.1 The highlighted text remains, indicating the request was submitted
asynchronously. Firebug (shown at the bottom of the browser window) also allows
us to inspect AJAX calls for better debugging . Get Firebug at http://
getfirebug.com/.

http://getfirebug.com/
http://getfirebug.com/

198 CHAPTER 9 AJAX in ASP.NET MVC

9.2 AJAX with ASP.NET Web Forms
If we take the example in listings 9.1 and 9.2 and apply it to Web Forms, we may hit
some bumps. First is the issue of the actual web request. Earlier we specified the URL
to be get_message.html, but in reality this is probably going to be a dynamic page.
Let’s assume that we used get_message.aspx and the message actually came from a
database. ASP.NET pages go through the page lifecycle events and render the template
(.ASPX) that we have defined. These templates represent a full HTML document; how-
ever, we only wanted to render the message. We could instead utilize a custom
IHttpHandler to intercept a different file extension and not use the page template.
This would look something like listing 9.3.

public class AjaxHandler : IHttpHandler
{

Listing 9.3 A custom AJAX HttpHandler

Unobtrusive JavaScript
You might notice throughout this chapter that we prefer unobtrusive JavaScript.
This means that the functionality of the page degrades gracefully in the absence of
JavaScript. We also adhere to common JavaScript standards, such as docu-
ment.getElementById('myDiv') rather than the nonstandard document.myDiv
or others.

Have you ever seen code that looks like this?

info

The href attribute is supposed to point to a document, not contain JavaScript code.
Other times we see this:

info

We still have that funky JavaScript string where it doesn’t belong, and this time we’re
using the onclick handler of the tag. This is marginally better, but if you followed
unobtrusive scripting, you’d end up with something like this:

info

With JavaScript enabled, we can loop over all links with a class of 'popup' and attach
an onclick event handler that calls window.open() with the link’s href property. If
JavaScript is disabled, the link functions normally, and the user can still see the info.
html page. We get the benefit of graceful degradation in the absence of JavaScript
and separation of behavior from presentation.

In some cases the examples show what is most easily displayed in book format; in
practice, it’s worthwhile to follow the unobtrusive JavaScript principles.

For more information on unobtrusive JavaScript, see Jeremy Keith’s excellent book
DOM Scripting: Web Design with JavaScript and the Document Object Model.
 public bool IsReusable

199AJAX with ASP.NET Web Forms

 {
 get { return true; }
 }

 public void ProcessRequest(HttpContext context)
 {
 if (context.Request.QueryString["operation"] == "get_message")
 {
 context.Response.Write("yuck");
 context.Response.ContentType = "text/plain";
 }

 context.Response.End();
 }
}

Quickly we can see that using Response.Write() from our code is a cumbersome way
to render content for an AJAX request when the logic is nontrivial. As the number and
size of the AJAX request/responses increase, Response.Write() becomes very difficult
to maintain. The Law of Demeter violation also increases the difficulty of unit testing
this handler class. We’d like to use the templating power of ASPX, without using full
HTML documents.

We might come across another bump in the road in the callback function. When the
request comes back from the server, we get the element with the ID of result and
update its contents with the response text. If our target element is a server con-
trol—such as a TextBox, Panel, or Label—ASP.NET will generate the ID for us. Thus

Law of Demeter
The Law of Demeter, or Principle of Least Knowledge, has been heavily discussed
since Karl J. Lieberherr presented it to the OOPSLA conference of 1988. The Law of
Demeter is as follows:

“For all classes C, and for all methods M attached to C, all objects to which M sends a
message must be instances of classes associated with the following classes:

The argument classes of M (including C).

The instance variable classes of C.

(Objects created by M, or by functions or methods which M calls, and objects in global
variables are considered as arguments of M.)”

It has been simplified since then and can be summarized by saying “only talk to your
immediate friends.” A line of something.something.something() is the telltale
sign of a Law of Demeter violation.

You can read the original OOPSLA88 paper at http://www.ccs.neu.edu/research/
demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf.

http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf
http://www.ccs.neu.edu/research/demeter/papers/law-of-demeter/oopsla88-law-of-demeter.pdf

200 CHAPTER 9 AJAX in ASP.NET MVC

we are forced to generate this ID using some method of <%= theControl.ClientID
%>, which will give us the correct identifier. This means we either need to pass in the
ID to the JavaScript function, or generate the entire function definition inside our
ASPX page so that we can execute the snippet in our example.

 With ASP.NET MVC we can do better. We have complete control over our HTML,
and as such have responsibility for naming our elements in a way that will not collide
with other elements on the page. We also have a better method of having templates
for our results, so that we may return an HTML fragment for an AJAX call and not rely
on Response.Write().

9.3 AJAX in ASP.NET MVC
In ASP.NET MVC our AJAX scenario is much cleaner. We have control over the ren-
dered HTML, so we can choose our own element IDs and not rely on ASP.NET server
controls to generate them for us. We can also choose to render views that can be plain
text, XML, JSON, HTML fragments, or even JavaScript that can be run on the client.
Let’s take a more complicated scenario and see how it looks in ASP.NET MVC.

 Most of the examples in this chapter will utilize an excellent JavaScript library
called jQuery. jQuery is becoming increasingly popular for its simplicity and elegant
syntax. It has been so popular, in fact, that Microsoft has included jQuery as one of the

AJAX return values
The X in AJAX stands for XML, but that doesn’t mean we have to return XML for our
AJAX calls. There are multiple options for return values. Some are better for over-the-
wire performance, some are easy to create on the server-side, and some are easy to
consume with JavaScript. You should choose the one that fits your needs best.

Simple return values can be passed, such as in the example in this chapter, or partial
HTML snippets can be returned to be added to the DOM. Often you need to work with
structured data. XML documents can be returned, and although they are easy to cre-
ate on the server they are not a common choice due to the additional overhead and
complexity of parsing XML in the web browser with JavaScript. Using JSON is a better
solution for representing data.

JSON strings are native representations of JavaScript objects. They only need to be
passed to the eval() method to be evaluated as and returned as usable objects.
For more information on the JSON format, see http://json.org.

When you want to take advantage of templates, you can return HTML fragments and
update the HTML directly with the result. This option tends to be the simplest, since
you do not have to parse any data. This approach can cause issues later on if you
refactor your views; you’ll have to ensure that every piece of injectable HTML still
works with the updated DOM of your new template.

Always choose the most appropriate method of response given your scenario.
default JavaScript libraries for ASP.NET MVC projects. The Microsoft AJAX client

http://json.org

201AJAX in ASP.NET MVC

library that comes with ASP.NET AJAX is also used for a few of the AJAX helpers, most
notably <% Ajax.BeginForm() %>. We’ll see how this functions later in this chapter.

 jQuery is a JavaScript library that makes JavaScript development more concise,
more consistent across browsers, and more enjoyable. jQuery has a powerful selector
system, where you use CSS rules to pinpoint and select elements from the DOM and
manipulate them. The entire library is contained in a single minified JavaScript file
(jquery.js) and can be placed in the ~/Scripts directory of your MVC project. ASP.NET
MVC ships with jQuery, so you can use it right out of the box.

 The following sidebar is a quick primer on how to use jQuery. You can use many
other excellent JavaScript libraries with the ASP.NET MVC Framework as well. Proto-
type, script.aculo.us, dojo, mootools, YUI, and so on, all have strengths and weak-
nesses; jQuery will be included in all MVC projects by default. At the time of writing
the current version of jQuery is 1.3.2.

 The first example in this chapter used a button click to fire off the request. There
were no parameters sent to the server, so the same message would always be returned.
This is hardly a useful way to build AJAX applications. A more realistic approach (and
one that is quite popular) is to take a form and hook into the onsubmit event. The
form values are sent via AJAX instead and the standard form submission is canceled.
Jeremy Keith calls this technique Hijax.

9.3.1 Hijaxing Code Camp Server

Our first example will cover a small feature in Code Camp Server. We’ll implement
the Hijax technique. Let’s take a look at the user story for this feature:

As a potential speaker, I would like to add sessions to the conference (with a name
and description) so that the organizer can review them and approve the ones that
fit. I would like the interaction to be seamless so that I can add multiple sessions
very quickly.

Figure 9.2 is the form (in Code Camp Server) where you can add sessions to a confer-
ence. It consists of two textboxes, a dropdown list, and a submit button. When the
form is submitted, a track is created and added to the conference, and the page is ren-
dered again with a styled list of current tracks.

 When you submit the form, the session is added, and the user is redirected back to
/session/index to view the updated table. The HTML behind this form looks like
this:

<% using(Html.BeginForm("add", "session",
 FormMethod.Post, new{id="new_session"})) { %>
<fieldset>
 <legend>Propose new session</legend>
 <label for="title">Title</label>
 <input type="text" name="title" />

 <label for="description">Description</label>
 <textarea name="description" rows="3" cols="30"></textarea>
 <label for="level">Level</label>

http://json.org

202 CHAPTER 9 AJAX in ASP.NET MVC

 <select name="level">
 <option selected="selected" value="100">100</option>
 <option value="200">200</option>
 <option value="300">300</option>
 <option value="400">400</option>
 </select>

 <input type="submit" value="Add" />
</fieldset>
<% } %>

It’s important to ensure that your application works without AJAX, because your users
might decide to run with JavaScript turned off, or they might be using a mobile

Figure 9.2 These form values are serialized and sent to the server via AJAX. The result is a
seamless method of adding sessions without a page refresh. When you disable JavaScript it still
works the old way.

203AJAX in ASP.NET MVC

browser without JavaScript support. Our example works, so we can now focus on spot-
welding AJAX onto this form without touching the HTML. We can apply a simple
jQuery script that will hijack this form post and provide the seamless AJAX experience

A jQuery primer
To use jQuery, you must reference the jquery.js JavaScript file in the <head> ele-
ment of your page.

The $() function accepts a string and is used to

■ Select elements by ID or CSS selector (i.e. $('#myDiv') => <div
id="myDiv" />)

■ Select elements within some context (i.e. $('input:button', someCon-
tainer))

■ Create HTML dynamically (i.e. $('updating…'))
■ Extend an existing element with jQuery functionality (i.e. $(textbox))
■ Execute a function once the entire DOM is ready (i.e. $(do_stuff) => exe-

cutes do_stuff()) when the DOM has been loaded (without waiting for
images to load).

To have some code executed when the DOM is ready, rather than putting the script
at the bottom of the page, you can put it in the <head> this way:

■ $(document).ready(function() { /* your code here */ });

This is the same as

■ $().ready(function() { /* your code here */ });

It can be shortened even further like so:

■ $(function { /* your code */ });

There’s usually a shorter way of doing anything in jQuery. The nice thing about
$(document).ready is that it will fire as soon as the DOM is loaded, but it
doesn’t wait for images to finish loading. This results in a faster startup time than
with window.onload.

The $.ajax([options]) function can be used to send AJAX requests to the server.
$.get() and $.post() are also useful simplifications of the $.ajax() function.

To serialize a form’s values into name1=val&name2=val2 format, use $(form).
serialize().

I have just scratched the surface here. For a real introduction to jQuery, visit the jQue-
ry website. I highly recommend the book jQuery in Action by Bear Bibeault and Yehuda
Katz, also from Manning, for more serious studies.

For more detailed information, see the documentation online at http://docs.jquery.com.
instead (when the user has enabled JavaScript). This is called progressive enhancement.

http://www.codeplex.com/json
http://docs.jquery.com

204 CHAPTER 9 AJAX in ASP.NET MVC

 Let’s see how that is implemented. When the user clicks the submit button the
browser physically posts to the server. We need to cancel this action so the browser
doesn’t go anywhere. If we add an onsubmit JavaScript handler to the form and call
event.preventDefault(), we can capture the form post and circumvent the actual
post operation. We can then gather the form values and submit the form post instead
with AJAX. Listing 9.4 shows the setup for the JavaScript.

$(document).ready(function() {
 $("form#new_session").submit(function(event) {
 event.preventDefault();
 hijack(this, update_sessions, "html");
 });
});

function hijack(form, callback, format) {
 $("#indicator").show();
 $.ajax({
 url: form.action,
 type: form.method,
 dataType: format,
 data: $(form).serialize(),
 completed: $("#indicator").hide(),
 success: callback
 });
}

function update_sessions(result) {
 $("#session-list").html(result);
 $("#message").hide().html("session added")
 .fadeIn(2000)
 .fadeOut(2000);
}

NOTE Warning Notice in the previous listing that we called event.prevent-
Default(). This effectively removes the actual form submit behavior. You
can also accomplish this by returning false from the function. Be care-
ful when using return false in your event handlers. If an error occurs
before our return false statement, it won’t be passed down to the caller
and the browser will continue with the form post behavior. At the very
least, surround this behavior in a try {} catch {} block and alert any
errors that occur. Detecting and tracking down JavaScript errors after the
browser has left the page is difficult and annoying. With jQuery, using
event.preventDefault() is both easier and safer.

This script can reside in a separate file referenced by the page or in a script tag of the
<head> element. It’s sometimes common to see <script> tags in the middle of the
<body>, but it’s good to try to place scripts in the <head> to keep things tidy. These
scripts are loaded before other DOM content, so if page load times become a problem,
consider placing them at the bottom of the page.

Listing 9.4 The jQuery script that sets up the form hijacking

Setup form’s
onsubmit handler

Send form
data via AJAX

This is the
callback function

205AJAX in ASP.NET MVC

 Notice how the AJAX call is made. The $.ajax() method accepts a number of options
for customizing the call. Isn’t this a lot cleaner than our manual approach (figure 9.3)?
For more simplified AJAX calls you might opt to use $.post() or $.get(). Read up on
the jQuery documentation to see the various options available to you.

 Now, the form submits via AJAX when JavaScript is enabled, which is what we were
aiming for. Nobody loses functionality in the absence of JavaScript, but rather the
experience is enhanced with JavaScript. The best part about this Hijax technique is
that it’s purely additive; you simply apply the extra JavaScript to an existing function-
ing form to enhance it with asynchronous behavior.

Listing 9.5 shows the SessionController actions in detail. Notice how we are reusing
the same actions for both full layout and partial HTML requests. This is implemented
as a partial view _list.ascx. This user control is embedded in the full layout, and ren-
dered independently for partial requests.

public ActionResult Index()

Listing 9.5 The actions for SessionController

Figure 9.3 When an AJAX call is initiated Firebug shows it in the Console. You can use this tool to inspect
the actual request and response of an AJAX call. Firebug is invaluable when doing AJAX development.
{

206 CHAPTER 9 AJAX in ASP.NET MVC

 var sessions = _sessionRepository.FindAll();

 if(Request.IsAjaxRequest())
 return View("_sessionList", sessions);

 return View(sessions);
}

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Add(string title, string description, string level)
{
 var session = new Session
 {
 Id = Guid.NewGuid(),
 Title = title,
 Description = description,
 Level = level
 };

 _sessionRepository.SaveSession(session);

 if(Request.IsAjaxRequest())
 return Index();

 return RedirectToAction("index");
}

The Index action checks to see whether the request is an AJAX request. If so, it will
render the user control that represents the HTML fragment being displayed. If it’s a
regular request, the full HTML document (with the template) will be rendered.

 The Add action is decorated with an AcceptVerbs attribute B to protect it from
GET requests. If this is an AJAX request—which is defined by an extra HTTP header in
the request—the response needs to be the updated session list HTML. In the standard
case without AJAX, the browser should redirect to the Index action.

 The AJAX technique that we’ve applied here is both easy to implement (with the
help of jQuery) and easy to understand. This is probably the most common method of
applying AJAX. Don’t believe me? This is essentially what the beloved UpdatePanel
does in ASP.NET AJAX. We hear advertisements for other commercial AJAX compo-
nents for “no-touch AJAX” or “zero-code AJAX” all the time. This is basically the tech-
nique they’re using. Your authors firmly believe that “no-code” solutions are great for
some scenarios, but they break down and become difficult to work with in more com-
plex situations. It’s often better to leverage a simple framework that lets you explicitly
control the AJAX integration to give you the flexibility to adapt your application to
increasingly complex functionality requirements. Here we’ve applied a simple script
than can be reused on other pages to enhance a page with AJAX.

 This example returned a snippet of HTML to the client. Sometimes we don’t want
HTML as our return value. HTML is the heaviest of the choices because it contains all
of the formatting along with the data. Our example returned the entire rendered
table. If over-the-wire performance is a concern (for example, if you intend to have
users on slow connections or you have a lot of data to transfer) then you might opt for

Render partial
for AJAX requests

B

AJAX requests
need partial view
a lighter-weight representation of the data. If updated display information is needed,

207AJAX in ASP.NET MVC

JavaScript can dynamically build DOM elements to represent the data. Although more
difficult, the flexibility and power exists when necessary.

 There are two more common choices in data formats for JavaScript calls: XML and
JSON. JSON is much lighter weight than XML. Plaintext is also sometimes useful if you
don’t need any structure to your data.

9.3.2 AJAX with JSON

Our next example will be a speaker listing. We’ll see the names of the speakers in a
list. If the user clicks a speaker’s name, he will be directed to a speaker detail page.
Figure 9.4 illustrates the speaker list. Figure 9.5 shows the speaker details.

 Let’s provide a richer user experience by applying AJAX to the speaker listing page.
We’d like to enhance the speaker listing to show the speaker details next to the name
when the user hovers over the name with the mouse.

 To accomplish this, we’ll leverage JSON as our transfer format. Why JSON? First off,
our previous example used HTML, which we can all agree is verbose over the wire. If
this is a concern, then we should be transmitting data only, leaving presentation to the
client. One choice might be to represent the data using XML. Let’s take a look at a
sample XML document in listing 9.6:

<speaker>
 <id>313bd98d-525c-4566-bfa1-7a4f8b01ef7b</id>
 <firstName>Ben</firstName>
 <lastName>Scheirman</lastName>
 <bio>Ben Scheirman is a Principal Consultant with Sogeti in Houston, TX.</

bio>
 <picUrl>/content/ben.png</picUrl>
</speaker>

Listing 9.6 An XML document representing a speaker contains a lot of noise

Figure 9.4 Listing the speakers. When you
click the name, the user is directed to a speaker
detail page.

Figure 9.5 The speaker details are shown on a
separate page.

208 CHAPTER 9 AJAX in ASP.NET MVC

There is a lot of noise text in there (such as all of the closing tags). The same example
represented in JSON looks like listing 9.7.

({
 "id":"313bd98d-525c-4566-bfa1-7a4f8b01ef7b",
 "firstName":"Ben",
 "lastName":"Scheirman",
 "bio":" Ben Scheirman is a Principal Consultant with Sogeti in Houston,

 TX.",
 "picUrl":"/content/ben.png"
})

The JSON format is easy to understand, once you understand the basic rules. At the
core, and object is represented as in figure 9.6.

Isn’t the JSON representation more concise? Sure it might be a tad harder to read, but
this is primarily for machines to consume, not humans. JSON documents will require
fewer bytes to transmit (21 percent fewer in the earlier example), leading to less strain
on the server and faster download times for your users. But this isn’t the only reason
that JSON is a better choice. JSON is JavaScript. Your result can be evaluated and
treated as a first-class JavaScript object. (This evaluation is much faster than parsing
XML as well.) Take your pick: get a real JavaScript object, or deal with XML parsing
and manipulation.

 A number of .NET JSON libraries can make your life easier. I’ve used JSON.NET by
NewtonSoft, which is free to use and works well. You can download it at http://
www.codeplex.com/json. The ASP.NET MVC Framework also includes a mechanism
for serializing objects into JSON, which we’ll see in a minute.

 Now that we have settled on the JSON format for our AJAX feature, how do we get
the controller to render it? Let’s see how we can accommodate different view formats
in our controllers.

9.3.3 Adding alternate view formats to the controller

Currently we have a controller action that finds the speaker from our repository and
renders a “detail” view, passing the speaker in as ViewData. We want to take advantage

Listing 9.7 A JSON string representing a speaker is much more lightweight

Figure 9.6 The JSON object diagram shows us a simple way of understanding the format.
Taken from http://json.org.
of this action, but alter the view that gets rendered. We still want to get a speaker

http://www.codeplex.com/json
http://www.codeplex.com/json

209AJAX in ASP.NET MVC

based on the name, but in our AJAX call we’d like the server to return a JSON string
instead of an HTML document. Listing 9.8 shows the original controller action.

public ActionResult Details(string id)
{
 var speaker = _repository.FindSpeakerByName(id.Humanize());
 return View(speaker);
}

The ID passed in is a “URLized” representation of the name. Thus, “Ben Scheirman”
becomes “ben-scheirman” in order to have cleaner URLs. This method is not safe for
names that are already hyphenated (those would have to be escaped) or contain any
other special characters, but for our simple example it works. We perform the reverse
operation, called Humanize(), to get the actual name to search for.

NOTE Rather than searching for a single record by name, we could instead have
a pseudokey stored in the database for use as a unique, human-readable,
URL-friendly identifier. This is sometimes called a slug. This would avoid
the problem of hyphenated names or names with invalid URL characters.
We might also choose to add additional information to the route, such as
the primary key. If we employed this technique, our URL would look like
/speakers/13/ben-scheirman. The 13 would be a unique identifier, and
the remaining segment of the URL would exist simply for the benefit of
readability. Refer to chapter 5 for more information on creating custom
routes like this.

In our AJAX case, we don’t want an entire view to be returned from the action. This
would result in a large HTML document being returned in an AJAX call. For an AJAX
call, we want to return the JSON data directly. We’ll leverage the same technique we
did in listing 9.5 and notify the action about the type of request. We can also use this
opportunity to allow for multiple formats to be rendered.

 The modified controller action shown in listing 9.9 accepts an optional format as
an argument. Valid values would be html (the default), partial (for html fragments),
xml, and json. Our view can choose to respond to any one or all of those formats.

public ActionResult Details(string id, string format)
{
 var speaker = _repository.FindSpeakerByName(id.Humanize());

 if(format == "json")
 return Json(speaker);

 return View(speaker);
}

The Json() method B returns a JsonResult from the action and contains the object

Listing 9.8 The controller action before any modifications

Listing 9.9 A modified controller action that accepts an optional format

B

formatted as JSON.

210 CHAPTER 9 AJAX in ASP.NET MVC

TIP You can send anonymous objects to the Json() method and have your
object serialized to JSON format correctly. This is useful when you want to
return JSON data that does not directly map to a class in your project. For
example, this is valid:

return Json(new { Name="Joe", Occupation="Plumber" });

To test out our different rendering formats, we’ll open up the same speaker detail
page from before, but this time we’ll add ?format=json to the end of the URL as shown
in figure 9.7. The MVC Framework will match up querystring and form parameters to
action arguments if the names are the same. We could easily add more formats, such
as XML. In the event that format is omitted (as in our original URL) then this value
will be null.

Now that we have our JSON-enabled AJAX action ready for use, let’s see how we can
modify the speaker listing page to consume this.

9.3.4 Consuming a JSON action from the view

The first task is to hook into the mouseover and mouseout events of each list item. When
the user hovers over a list item, as coded in listing 9.10, an AJAX call will be made to
get the speaker details (as JSON) and construct a small detail box alongside the link.

$(document).ready(function() {
 $("ul.speakers a")

Listing 9.10 Hooking up hover behavior on each of the links

Figure 9.7 Seeing our JSON result from the browser
 .mouseover(function() {

211AJAX in ASP.NET MVC

 show_details(this);
 }).mouseout(function() {
 hide_details(this)
 });
});

It may not be apparent at first glance, but the $("ul.speakers a") function in list-
ing 9.10 is a CSS selector that returns multiple elements. We attach a handler to each
element’s mouseover and mouseout events.

 Next we have to actually do something when the user hovers over the link. I added
a hidden <div> tag to each list item that serves as the container for the speaker’s
detailed information. The show_details() function, in listing 9.11, should show this
box along with an AJAX loading indicator. When the data comes back from the server,
we’ll build elements to display the information.

function show_details(link)
{
 var box = $(link).next();

 box.show();
 box.html('');

 $('').attr('src' '/content/load.gif')
 .attr('alt', 'loading...').appendTo(box);

 var url = link.href
 .replace(/http:\/\/[^\/]+\//, "")
 .replace(/\?format=html/, "?format=json");

 $.getJSON(url, null, function(data) {
 loadSpeakerDetails(box, data);
 });
}

This function has a lot going on, so let’s break it down for each step. The link itself is
passed in to the function, and we know that the “box” (the container where we’ll put
the user details) is the very next node in the DOM, so we use the jQuery next() func-
tion to retrieve it B. We then clear its contents and display it C. The next line creates
an image tag pointing to load.gif and appends it inside the box element D. To
retrieve the JSON object for the speaker details we have to use the same URL as the
link, but we need to replace the format to specify json, so we use a regular expression
to do the replacement for us E. We issue an AJAX GET request for the URL F. The
callback for this AJAX operation is the next function, loadSpeakerDetails, as shown
in listing 9.12.

function loadSpeakerDetails(box, speaker)
{
 box.html('');

Listing 9.11 When the user is hovering over the link

Listing 9.12 Creating the HTML to display the speaker details

B

C

D

E

F

Clear loading graphic

212 CHAPTER 9 AJAX in ASP.NET MVC

 $('')
 .attr("src", speaker.PictureUrl)
 .attr("alt", "pic")
 .attr("style", "float:left;margin:5px")
 .appendTo(box);

 $('')
 .attr("style", "font-size: .8em")
 .html(speaker.Bio).appendTo(box);

 $('<br style="clear:both" />').appendTo(box);
}

In this function we are simply creating a few HTML elements to display the user
details, and we are adding them to the box element. The last thing to do is hide the
box, as coded in listing 9.13, when the user leaves the link region.

function hide_details(link)
{
 $(link).next().hide();
}

Using jQuery in these examples has allowed us to be productive and expressive, while
not worrying about cross-browser JavaScript quirks and incompatibilities. The result-
ing code is more durable and more concise. A good JavaScript library such as jQuery
is a must in any web developer’s tool belt.

 All of the pieces are now tied together, and we can see the results of our work. In fig-
ure 9.8 you can see AJAX call at the bottom (in the Firebug window), and the page gives
us the information we need without any page redirects or refreshes. How refreshing!

Listing 9.13 When the user leaves the link

Image to display
speaker picture

Span to hold
speaker bio

Figure 9.8 Our finished AJAX-

enabled page

213AJAX in ASP.NET MVC

9.3.5 AJAX helpers

The ASP.NET MVC Framework ships with a couple of AJAX helpers that you can use to
quickly create AJAX behaviors on your site. Just as the HTML helpers are accessed with
<%= Html.HelperName() %>, the AJAX helpers are accessed via <%= Ajax.HelperName()
%>. In order to utilize these helpers in your application you must reference Microsoft-
Ajax.js and MicrosoftMvcAjax.js, which are included in the project template in the
/scripts folder. It’s safe to reference these in combination with jQuery.

 The first AJAX helper that we’ll examine is Ajax.ActionLink. This helper provides
the ability to invoke an action asynchronously and update an element on the page.
The usage is simple:

<%= Ajax.ActionLink("Click here", "GetMessage", new AjaxOptions {
 UpdateTargetId = "message_container",
 InsertionMode = InsertionMode.Replace
}) %>

This will render a link with displayed text Click here. When the user clicks the link the
GetMessage action will be invoked via AJAX. The response from this action (probably
some HTML fragment) will be placed in an element with ID message_container. The
available parameters you can pass to the AjaxOptions class to customize the behavior
of the link are listed in table 9.1.

NOTE Warning It’s tempting to put a simple JavaScript expression in the
OnBegin handler or its counterparts; however, this causes a syntax error
in the generated onclick handler for the anchor tag. Make sure you sim-
ply reference the JavaScript function by name (without parentheses) like
this: OnBegin = "ajaxStart"

The AJAX link is just one of the helpers that invokes an action asynchronously. It’s use-

Table 9.1 AJAX options available

HttpMethod Can be "GET" or "POST". The default is "GET".

UpdateTargetId The element that will receive the content.

InsertionMode Can be InsertBefore, InsertAfter, or Replace.

OnBegin JavaScript function to be called before invoking the action.

OnComplete JavaScript function to be called after the response comes back.

OnFailure JavaScript function to be called in the event of an error.

OnSuccess JavaScript function to be called if no errors occur.

Confirm Confirmation message to provide an OK/Cancel dialog before proceeding.

Url URL to use if the anchor tag has a different destination than the AJAX request.

LoadingElementId An element that displays AJAX progress. The element should be marked as
visibility:hidden initially.
ful in scenarios where the logic is very simple, such as notifying the server of an action,

214 CHAPTER 9 AJAX in ASP.NET MVC

or retrieving a simple value. For more complicated scenarios, where there is data to be
sent to the server, an AJAX form is more appropriate.

 The AJAX form is achieved through an AJAX helper called Ajax.BeginForm. It
behaves similar to the Hijax technique from earlier in this chapter. Usage is similar to
the AJAX action link:

<% using(Ajax.BeginForm("AddComment", new AjaxOptions{
 HttpMethod = "POST",
 UpdateTargetId = "comments",
 InsertionMode = InsertionMode.InsertAfter})) { %>

 <!-- form elements here -->

<% } %>

The same AjaxOptions class applies to this helper, and is used in the same way. In this
example the form is appending comments to an element on the page.

NOTE The using() block? The using block might look a bit strange to you. It’s
purely optional; however, it does give you the benefit of automatically
entering your closing form tag through the magic of the IDisposable
interface. You are free to do it the other way, like this:

<% Ajax.BeginForm(); %>
</form>

It looks a bit unbalanced. The choice is yours.

The AJAX helpers can quickly give you AJAX behaviors, although they have a couple
of drawbacks that are difficult to ignore. First, you can see that even simple examples
require many lines of code—code that is mixed in with your HTML markup. For
more advanced scenarios you can easily eat up ten lines or more, which detracts from
readability. Second, the JavaScript is hidden from you, so you cannot reliably trap
errors that occur as a result of your JavaScript handlers. Server errors will be trapped
by the OnError handler; if your OnBegin code throws an error, your AJAX behavior
cannot be completed. Because of these deficiencies many will choose to write the
JavaScript by hand and get more control over the AJAX interaction. The jQuery sam-
ples in this chapter should have given you all you need to create the same effect with
pure jQuery. That said, the AJAX helpers allow you to get quick AJAX functionality for
minimal effort.

9.4 Summary
AJAX is an important technique to use with today’s web applications. Using it effec-
tively means that the majority of your users will get a better experience, but it does not
prevent users with JavaScript disabled from accessing the site. This is sometimes
referred to as progressive enhancement. Unfortunately, with raw JavaScript the tech-
nique is cumbersome and error prone. With good libraries such as jQuery, Prototype,
script.acul.ous, Mochikit, and others, you can be much more productive.

215Summary

 In this chapter you have learned how to apply AJAX in different ways: using partial
HTML replacement and JSON. You have learned how to hijack a form submission and
provide a more seamless AJAX experience for those users who support AJAX, while
continuing functionality for those who don’t. Throughout this chapter you have seen
how to apply jQuery, a productive JavaScript library.

 Next up, we’ll take a look at hosting and deployment options for ASP.NET MVC.

Hosting and deployment
Running an ASP.NET MVC application in Visual Studio is as easy as hitting F5, but
what about deploying the application? In a Windows-hosted environment, web
applications are typically deployed to Internet Information Services (IIS). But sev-
eral different versions of IIS are on the market, each with different configurations
and options for hosting an ASP.NET MVC application. With new features like rout-
ing, in some versions of IIS hosting presents new challenges that did not exist with
Web Forms applications.

 Beyond server environment and hosting scenarios, deploying an application
presents an entirely different set of challenges. Manual deployments are fraught
with problems, as human errors become more prevalent. Automation eliminates
these eleventh-hour problems by removing the human factor from deployments.
Each deployment environment is slightly different, because connection strings,
configuration settings, and server environments can vary. By introducing change

This chapter covers
■ Understanding server environment requirements
■ Revealing hosting options in IIS
■ Configuring different environments
■ Creating push-button deployments
216

http://www.isapirewrite.com/
http://www.isapirewrite.com/
http://www.isapirewrite.com/
http://www.isapirewrite.com/
http://www.isapirewrite.com/
http://www.isapirewrite.com/

217Deployment scenarios

management into our automated deployment process, we can ensure we install the
correct application with the correct environment settings.

 In this chapter the reader will learn options for hosting in the different IIS ver-
sions supported today. The reader will learn how to simplify deployment through an
xcopy deployment strategy, and automate deployment through build automation
tools. With these build automation tools, the reader will see how to take advantage of
configuration management to automate configuration changes to the various deploy-
ment environments.

10.1 Deployment scenarios
In most scenarios, deploying an ASP.NET MVC application involves deployment to a
Windows Server OS environment. Occasionally, it is necessary to deploy to older envi-
ronments such as Windows Server 2000 or Windows XP, with older versions of IIS.
Table 10.1 shows Windows OSs and the version of IIS available.

For all practical purposes, there are only two types of hosting environments we need
to worry about:

■ IIS 7.0+
■ Not IIS 7.0+

Deploying to an IIS 7.0 environment to support the routing features of ASP.NET MVC
requires far less configuration than the older versions of IIS. Most of the configuration
decisions for IIS 6 and older versions revolve around routing, where your deployment
decision could affect how you configure your routes.

 Before we look at IIS deployment options, let’s look at the hosting requirements
for an ASP.NET MVC application. In addition to having IIS installed, the target
machine will need to have the following software installed:

■ .NET Framework 3.5
■ .NET Framework 3.0

Windows Operating System IIS version

Windows 2000 IIS 5.0

Windows XP Professional IIS 5.1

Windows XP Professional x64 Edition IIS 6.0

Windows Server 2003 IIS 6.0

Windows Vista IIS 7.0

Windows Server 2008 IIS 7.0

Windows 7 IIS 7.5

Windows Server 2008 R2 IIS 7.5
Table 10.1 Windows and IIS versions
■ .NET Framework 2.0

http://www.isapirewrite.com/
http://www.isapirewrite.com/
http://www.codeplex.com/IIRF/

218 CHAPTER 10 Hosting and deployment

The 3.5 version of the .NET Framework includes Service Pack 1 of both .NET Frame-
work 3.0 and 2.0. In addition to the .NET Framework, supporting software such as SQL
Server may need to be installed. Note that .NET 3.5 Service Pack 1 is not required,
though 3.5 SP1 does include the ASP.NET Routing feature, which both MVC and Web
Forms applications can take advantage of.

 Later in this chapter, we’ll look at how the .NET 3.5 SP1 affects our deployment strat-
egy. But first, we’ll see how to deploy to an IIS environment using XCOPY deployment.

10.2 XCOPY deployment
Regardless of the version of IIS used, not every file in your solution needs to exist in
the final destination on the server. Those familiar with Web Forms deployments know
not to deploy code-behind files. The same holds true for MVC deployments. For an
MVC-only website, the files needed are

■ Global.asax
■ Web.config
■ Content files (JavaScript, images, static HTML, etc.)
■ Views
■ Compiled assemblies
■ MVC assemblies
■ System.Web.Abstractions.dll (not needed with .NET 3.5 SP1)
■ System.Web.Mvc.dll
■ System.Web.Routing.dll (not needed with .NET 3.5 SP1)

Deployments themselves can be difficult. Add complexities like installers, and deploy-
ments can become even more difficult to execute and maintain. Installers usually
need a person logged in to the target machine to run them, and automation of install-
ers is possible but still difficult. Log files from a botched installation usually consist of
output from the MSI logger, which can be extremely verbose and indecipherable.

 For many application deployment scenarios, an installer is unnecessary. Assuming
the target machine is already configured correctly, simply copying over files is suffi-
cient to deploy the application. This type of deployment is called XCOPY deployment.
The term originated from the XCOPY DOS command, which allowed copying of multi-
ple files in one command, along with many other options.

 XCOPY deployment can significantly reduce the complexity of a deployment, as
no one needs to perform a manual installation on the target server. Although the
term XCOPY refers to a specific DOS command, it also applies to any technology that
copies files.

 As mentioned earlier, XCOPY deployments do not have to use a specific technology.
Batch files, NAnt scripts, MSBuild scripts and third-party products such as FinalBuilder
are all popular choices for creating XCOPY deployments. Particularly appealing are the
latter choices, which include features that assist in automated deployments. Later in
this chapter, we’ll look at taking advantage of NAnt to perform deployment tasks, in

219Deploying to IIS 7

addition to copying files. But first, let’s look at deploying an ASP.NET MVC application
to an IIS 7 environment.

10.3 Deploying to IIS 7
Before we look at automating our deployments, we need to configure our server to
host an ASP.NET MVC website. An MVC website needs a location on the target
machine’s hard drive. For this book, the location is unimportant, so we’ll choose
something simple: C:\websites\MVCSample. Our sample application will have no
dependencies on a database, but later we will look at how to incorporate a database
into our deployment strategy.

 Our controller for this sample application will be simple but incorporate some
common routes, as shown in listing 10.1.

public class ProductController : Controller
{
 private static readonly Product[] Products =
 new[]
 {
 new Product {Id = 1, Name = "Basketball",
 Description = "You bounce it."},
 new Product {Id = 2, Name = "Baseball",
 Description = "You throw it."},
 new Product {Id = 3, Name = "Football",
 Description = "You punt it."},

Listing 10.1 Our simple controller

Choosing an installation strategy
Although an XCOPY deployment is the simplest choice, it’s not always the right
choice. XCOPY deployments are designed to copy files to the destination machine,
and nothing more. Some IT environments require a specific deployment technology
for a variety of reasons, such as traceability, logging, and reversibility.

XCOPY deployments work well for most web scenarios, but provide no out-of-the-box
“uninstall” capabilities. Although other mechanisms exist to roll back an installation,
some IT governance teams prefer the reliability of an installer for rolling back changes.

In practice, however, an installer is only as good as the developer who created it. It
is still important to have test environments to ensure the installer works before trying
it in production.

Modern installer products allow endless customization, such as IIS configuration, SQL
configuration, and custom actions. The learning curve for these types of products is
not trivial, leaving many teams to assign one member to be the installer. If this person
leaves the team for any reason, often both the installer tool and the actions it performs
need to be entirely rediscovered and relearned.

Dummy list
of products

http://www.martinfowler.com/articles/continuousIntegration.html

220 CHAPTER 10 Hosting and deployment

 new Product {Id = 4, Name = "Golf ball",
 Description = "You hook or slice it."}
 };
 public ActionResult List()
 {
 ViewData["Products"] = Products;

 return View();
 }

 public ActionResult Show(int id)
 {
 var product = Products.FirstOrDefault(p => p.Id == id);

 ViewData["Product"] = product;

 return View();
 }

}

Navigating to the List action renders the screen shown in figure 10.1.

To deploy this ASP.NET MVC application to an IIS 7 box, we’ll first create a local folder
and move all our deployment files over. For this sample application, the folder struc-
ture is

■ C:\Websites\MVCSample
– \bin

– Iis7DeploymentSample.dll (our compiled application assembly)
– System.Web.Abstractions.dll (only needed when .NET 3.5 SP1 is NOT

installed)

Parameterless
action

One parameter,
from RouteData

Figure 10.1 Running the
MVC application locally
allows us to use “pretty”
URLs, with no extensions.

221Deploying to IIS 7

– System.Web.Mvc.dll
– System.Web.Routing.dll (only needed when .NET 3.5 SP1 is NOT installed)

– \Content
– Site.css

– \Views
– \Product

– List.aspx
– Show.aspx

– \Shared
– Error.aspx
– Site.master

– Web.config
– Default.aspx
– Global.asax
– Web.config

When content is in place, we can configure a new website in the IIS Manager by click-
ing Add Web Site…, as shown in figure 10.2.

Figure 10.2 Add Web Site in the IIS 7 Manager console

222 CHAPTER 10 Hosting and deployment

In the Add Web Site dialog that comes up, we’ll need to configure the

■ Site name
■ Application pool
■ Physical path
■ Binding

For the site name, I chose an arbitrary name that did not exist, “MVCSample.” In the
application pool dialog, any application pool will suffice as long as it is configured as a
.NET 2.0 application pool. In IIS 7/7.5 it is preferred to use integrated mode, although
with a wildcard mapping, classic mode can be made to work as well. ASP.NET MVC is not
supported to run on lower versions of ASP.NET. We won’t look at application pool strat-
egies, but with IIS 6 onward, IIS supports multiple websites, each with a shared or indi-
vidual application pool. The physical path will point to our C:\Websites\MVCSample
directory. Finally, I chose simply to bind to port 81 for this website. Typically in produc-
tion scenarios, the host name would be configured. The final configuration values are
shown in figure 10.3.

 Now that our website is configured and started, we can navigate to our MVC appli-
cation, as seen in figure 10.4.

 Besides extra configuration steps, such as security or binding, we did not have to
perform additional steps to get our MVC application running under IIS 7. The new
managed architecture of IIS 7 allows us to have simple deployments. Additionally, our
URLs look exactly the same as they did when running locally out of Visual Studio, with-
out .aspx or other extensions. IIS 7 supports “pretty” URLs out of the box, with no con-
figuration necessary.

Figure 10.3
Final configuration values for

the IIS 7 MVC deployment

223Deploying to IIS 6 and earlier

In the next section, we’ll examine configuration options available in IIS 6/5, and how
we can achieve the same effect of pretty URLs.

10.4 Deploying to IIS 6 and earlier
When we deploy our MVC application to IIS 6 and earlier, we can consider a few
options concerning routes. IIS 6 and earlier use ISAPI filters, which map file extension
requests to ISAPI handlers. Extensions, such as .aspx and .ascx, map to the ASP.NET
ISAPI handler, but extensions in the pretty, extension-less MVC URLs do not. By the
time ASP.NET handles the request, IIS has already chosen an ISAPI handler for the
request, and the selection may not be ASP.NET. Unfortunately, developing custom
ISAPI filters requires C/C++ knowledge. Although some open source projects exist for
writing managed ISAPI filters, it is not as easy as creating a custom IHttpHandler or
IHttpModule implementation.

 Out of the box, ASP.NET MVC applications will not work in IIS 6. Getting an MVC
application to run successfully in an IIS 6 environment requires either changes to our
routes or extra configuration steps in IIS. Our four choices for deploying to IIS 6 are

■ Configure routes to use the .aspx extension
■ Configure routes to use a custom extension (such as .mvc)
■ Use a wildcard mapping with selective disabling
■ Use URL rewriting

The last choice offers the most flexibility, but does require the use of third-party soft-
ware. Each option requires more configuration in IIS, which may not be available in
your deployment environment. First, let’s look at the easiest deployment option and

Figure 10.4
MVC application
deployed in IIS 7
configure our routes to use the .aspx extension.

224 CHAPTER 10 Hosting and deployment

10.4.1 Configuring routes to use the .aspx extension

When we install ASP.NET in IIS, by default the aspnet_isapi.dll ISAPI filter is set up to
handle requests to .aspx extensions. By configuring our routes to use the .aspx exten-
sion, we’ll avoid needing to configure extra mapping settings in IIS for our MVC appli-
cation. To configure our routes to use the .aspx extension, we need to change the
default route configuration to look like listing 10.2.

routes.MapRoute(
 "Default",
 "{controller}.aspx/{action}/{id}",
 new { controller = "Product", action = "List", id = "" }
);

After the {controller} element, we insert the .aspx extension into the route configu-
ration. Note that the extension is outside the brackets, and before the first backslash.
Deploying the application with the route configuration changes produces the result
shown in figure 10.5.

 Unfortunately, using this deployment option produces ugly, nonintuitive URLs.
Note the URL, http://localhost:81/product.aspx/show/4, now has the extension
immediately after the controller name. For those accustomed to extensions at the end
of the URL, this URL can be confusing. Although we did not have to perform any addi-
tional configuration in IIS, the outcome is an ugly URL. The strategy introduced in
chapter 6 for actions serving multiple formats (XML and JSON) becomes more chal-
lenging, as IIS may or may not have these extensions routing to ASP.NET. One of the
benefits of using MVC over Web Forms is pretty URLs, which have now been lost with
this deployment strategy. Our next option is to use a custom extension, which intro-
duces a slight cosmetic change to the resulting URLs.

Listing 10.2 Route configuration with the .aspx extension

IIS 7 deployments
don’t need extension

Figure 10.5
Using the .aspx
configuration
produces

modified URLs.

225Deploying to IIS 6 and earlier

10.4.2 Configuring routes to use a custom extension

Instead of mapping our routes to the .aspx extension, a custom extension could
reduce the confusion of users accustomed to Web Forms URLs. We’ll configure our
routes to use the .mvc extension instead of .aspx, as seen in listing 10.3.

routes.MapRoute(
 "Default",
 "{controller}.mvc/{action}/{id}",
 new { controller = "Product", action = "List", id = "" }
);

This configuration differs from the previous .aspx route configuration in the exten-
sion only. When it comes to deploying this route configuration, we need to perform
additional steps in IIS. Since IIS is not configured to handle requests from the .mvc
extension, we’ll need to add a mapping that will enable the ASP.NET ISAPI filter to
handle the .mvc extension. To map the new extension, follow these steps, as shown in
figures 10.6 and 10.7:

1 Create the website with the default configuration.
2 In the Home Directory tab in the Properties dialog for the website, click Config-

uration… .

Listing 10.3 Route configuration using the custom .mvc extension

Figure 10.6 Website properties dialog

226 CHAPTER 10 Hosting and deployment

3 In the Mappings tab in the Application Configuration dialog, click Add….
4 In the Add/Edit Application Extension Mapping dialog:

a Enter the path to aspnet_isapi.dll in the Executable textbox. This is typically
at C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll. Use
the .NET 2.0 version of the dll.

b Set the Extension value to .mvc. Make sure the extension has the leading dot.
c Select All verbs in the Verbs section. If you know the HTTP verbs you wish to

support, provide a comma-separated list of the verbs in the Limit to section.
d Uncheck the Verify that file exists option. The requested URLs will not map to

a location on disk, and IIS responds with a 404 if you don’t uncheck this value.

5 Click OK on all of the configuration dialogs.

Now that we have configured IIS to allow ASP.NET to handle requests for the .mvc exten-
sion, we can use the MVC application. Our new URL is http://localhost:82/product.
mvc/show/4, which is only a slight cosmetic change from the previous option. Although
using the .mvc extension might prevent some users from getting confused between Web
Forms .aspx URLs and .mvc URLs, these new URLs still go against normal URL conven-
tions. In normal URL conventions, only querystring parameters follow an extension.
Instead of using a custom extension, our next option uses a wildcard mapping.

10.4.3 Using wildcard mapping with selective disabling

With the next two options, we won’t have to perform any special route configuration.
In fact, we can deploy the same MVC application to both IIS 7 and IIS 6 and previous
versions with the wildcard mapping option. We no longer need an extension in our
route configuration, and the URLs used for development will be identical to the URLs
used for production on IIS 6.

 With wildcard mapping, all requests are routed to a single ISAPI filter. We’ll config-
ure the aspnet_isapi.dll filter to be this single filter. To create the wildcard mapping:

1 Create the website with the default configuration.
2 In the Home Directory tab in the Properties dialog for the website, click

Figure 10.7
Configuration values
for the new .MVC IIS
extension mapping
Configuration….

227Deploying to IIS 6 and earlier

3 In the Mappings tab in the Application Configuration dialog, click Insert….
4 In the Add/Edit Application Extension Mapping dialog:

a Enter the path to aspnet_isapi.dll in the Executable textbox. The path is typi-
cally C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll. Use
the .NET 2.0 version of the dll.

b Uncheck the Verify that file exists option and ensure the configuration
matches that shown in figure 10.8.

5 Click OK on all configuration dialogs.

After this configuration change, we can navigate to our MVC application, without spe-
cial extensions. Our URL is now http://localhost:83/product/show/4, matching the
URL that we see in IIS 7 deployments. This wildcard mapping has one unfortunate
side effect: all requests are now handled by ASP.NET, which does not perform as well as
IIS for many file types. For example, static files such as images, CSS, and JavaScript files
now pass through ASP.NET.

 We can configure subdirectories to remove the wildcard mapping. Because all
static content for deployed websites usually exists in subdirectories like Content, Scripts,
and others, we can perform extra configuration steps to allow IIS to handle these
static files, instead of IIS. Figures 10.9, 10.10, and 10.11 illustrate some of the steps.
For each subdirectory, we’ll need to

1 Right-click the subfolder and click Properties in the IIS Management Console.
2 In the Directory tab in the Properties dialog, click the Create button. This will cre-

ate an application for this folder, and will enable the Configuration… button.
3 In the Directory tab in the Properties dialog, click the Configuration… button.
4 In the Mappings tab of the Application Configuration dialog, click the Remove

button in the Wildcard application maps section. This will remove the wildcard
mapping we configured at the root earlier.

5 Click OK to return to the Application Configuration dialog.
6 In the Directory tab in the Application Configuration dialog, click Remove.

This will remove the Application from the subfolder.
7 Click OK on all configuration dialogs.

When you repeat these steps for each subfolder, you prevent IIS from using the wild-
card mapping in these subfolders. Because the only way to enable the Configura-
tion… button is to create an application, we have to temporarily configure the

Figure 10.8 Configuring
wildcard mapping to map
to ASP.NET

228 CHAPTER 10 Hosting and deployment

subfolder as an application. Removing the application after configuration does not
remove our custom configuration, however. Our changes are safe, although we had to
perform extra temporary configuration to get there.

Figure 10.9 Creating an
application for a subfolder
temporarily

Figure 10.10 Removing the

wildcard mapping from a subfolder

229Deploying to IIS 6 and earlier

Although this option requires a bit of configuration in IIS, it does not require any
additional software. Our route mappings do not need to change, and we get to keep
our pretty, extension-less URLs. Whenever we add another subfolder, we’ll need to
repeat the extra configuration steps to ensure ASP.NET does not handle requests it
does not need to. Sometimes, we need more control over our URLs than IIS 6 and ear-
lier versions allow right out of the box. In the next section, we’ll look at URL rewriting
to handle both MVC requests and additional URL rewriting scenarios.

10.4.4 Using URL rewriting

URL rewriting is a sizable topic, which covers resource management support, search
engine optimization, and canonicalized URLs. In many other web application servers,
URL rewriting is a first-class, built-in feature, or easily configured and customizable
add-on. In IIS 6 and earlier, there was no built-in URL rewriting ability. For IIS 7,
Microsoft released an HttpModule that allowed configuration directly from the IIS
Manager. Regardless of the version of IIS used, URL rewriting is a vital function for
many websites.

 Since URL rewriting is not available for IIS 6 and earlier out of the box, we’ll need
to use a third-party extension for rewrites. Two popular URL rewrite ISAPI extensions are

■ Helicon Tech’s ISAPI_Rewrite—http://www.isapirewrite.com/
■ Ionic’s Isapi Rewrite—http://www.codeplex.com/IIRF/

Helicon Tech has one free and one fully supported edition of its product. The Ionic

Figure 10.11 Removing
the application from the
subfolder
extension is free and open source, so we’ll configure our application using that.

http://www.isapirewrite.com/
http://www.codeplex.com/IIRF/

230 CHAPTER 10 Hosting and deployment

First, we’ll need to download the latest version of the filter from CodePlex. Once we
have the latest binaries, we are ready to configure our MVC application to use the
ISAPI Rewrite module. The general idea behind our URL rewriting strategy is to

■ Configure ISAPI Rewrite to add an .aspx extension to our URLs.
■ IIS will see a request for .aspx, and hand it off to ASP.NET.
■ Configure our web application to remove .aspx extensions. For existing Web

Forms environments, we’ll need to pick a different extension and then config-
ure IIS to handle that extension.

Because our web application removes the .aspx extension before the MVC route han-
dler processes the request, we won’t need to change our routing configuration. To
configure ISAPI rewrite, we’ll need to

1 Modify our web application to remove the .aspx extension at the beginning of
the request. We can place the code in listing 10.4 in the Global.asax.cs file.

protected void Application_BeginRequest(Object sender, EventArgs e)
{
 HttpApplication app = sender as HttpApplication;
 if (app != null)
 {
 if (app.Request
 .AppRelativeCurrentExecutionFilePath

Listing 10.4 Removing the .aspx extension on each request

Why should I care about URL rewriting?
URL rewriting is a general term for the ability to intercept URL requests and transform
them. For resource management, such as RSS links, URL rewriting can permanently
redirect requests to the new RSS URL, while remaining transparent to the subscribers.
In many ASP.NET websites, many URLs point to the same page. For example, all of
the following URLs resolve to the same page:

■ http://codeplex.com
■ http://codeplex.com/
■ http://codeplex.com/default.aspx
■ http://www.codeplex.com
■ http://www.codeplex.com/
■ http://www.codeplex.com/default.aspx

Yet they all resolve to different URLs, with a couple exceptions. Differing URL resolution
has the potential to lower search engine results, as many pages point to the same
content. With URL rewriting, all of the example URLs can be redirected to one canonical
URL. We can allow extension-less routes in our MVC application, and set ourselves
up for further vital URL rewriting scenarios.

Only requests for
 .Contains(".aspx"))
.aspx resources

http://codeplex.com
http://codeplex.com/
http://codeplex.com/default.aspx
http://www.codeplex.com
http://www.codeplex.com/
http://www.codeplex.com/default.aspx

231Deploying to IIS 6 and earlier

 {
 app.Context.RewritePath(
 app.Request.Url.PathAndQuery.Replace(".aspx", ""));
 }
 }
}

2 Create the website with the default configuration, and deploy our application as
normal.

3 Create a folder to hold the ISAPI extension. We’ll use C:\inetpub\isapirewrite.
4 Copy the IsapiRewrite4.dll to the newly created folder.
5 In the newly created folder, create an IsapiRewrite4.ini file and add the con-

tents in listing 10.5. Save this file when you have finished editing it.

RewriteRule ^/(\w+)(?!/Content)(/[A-Za-z0-9_-]+)$ /$1$2.aspx [I]

RewriteRule ^/(\w+)(?!/Content)(/[A-Za-z0-9_-]+)(/.*)?$ /$1$2.aspx$3 [I]

6 Open the Properties dialog for the website containing the MVC application in
IIS Manager.

7 In the ISAPI Filters tab in the Properties dialog, click Add….
8 Enter a name for the Filter name value, and the path to the IsapiRewrite4.dll

for the Executable value as shown in figure 10.12.

9 Click OK on all of the IIS configuration dialogs.
10 Restart ISS.

We can now navigate to our website with pretty URLs in the form http://localhost:84/
product/show/4. For more detailed configuration options, consult the readme
included with the download from CodePlex. The download includes configuration
examples, as well as instructions for enabling logging and other advanced features.
Although we had to make a small change to our Global.asax.cs file, the routes
remained the same, without any extensions. In addition, all URL-generating action
helpers still generate pretty URLs, ensuring that no end user ever sees a URL with the
.aspx extension. With the URL rewriting extension in place, we can now employ its fea-
tures to address canonical URLs, forwarding, and other rewriting concerns. The one

Listing 10.5 The URL rewriting rules

Figure 10.12 Configuring
the ISAPI Rewrite filter
caveat to keep in mind with this approach is that requests for real Web Forms pages,

232 CHAPTER 10 Hosting and deployment

such as Default.aspx, will no longer be served. If you have chosen this approach, you
will likely not be affected by this caveat.

 With our application deployed and configured, we’ll take a look at automating
deployments.

10.5 Automating deployments
On launch night, tensions are high as the smallest mistake could bring your website
down. To eliminate the human mistakes that inevitably occur, we would like to auto-
mate as much as possible. Ideally, we could simply push a button, and our website
would be updated in moments. How this happens depends largely on the deployment
environment. Regardless of the deployment environment, any good deployment strat-
egy requires the use of continuous integration.

10.5.1 Employing continuous integration

Working in an environment without an automated integration process can be hectic,
and nerve-racking. Because “it works on my machine” does not suffice in a deployment
scenario, we need a set of practices to ensure our code always works, and is always
ready to deploy. To achieve continuous integration, Martin Fowler laid out a set
of practices to adhere to (from http://www.martinfowler.com/articles/continuous-
Integration.html):

■ Maintain a single source repository (use source control).
■ Automate the build.
■ Make your build self-testing.
■ Make sure everyone commits every day.
■ Every commit should build the mainline on an integration machine.
■ Keep the build fast.
■ Test in a clone of a production environment.
■ Make it easy for anyone to get the latest executable.
■ Ensure everyone can see what’s happening.
■ Automate deployment.

We won’t cover all of the continuous integration practices in this book, as entire books
have been written on this topic. In addition to adhering to these practices, the “check-
in dance” ensures that no one inadvertently breaks the build. The check-in dance
steps are

1 Run the local build.
2 Announce to the team you are integrating (for large changes).
3 Pull down the latest version of the mainline. Merge any conflicts.
4 Run the local build.
5 If successful, commit the changes, providing a descriptive comment.
6 Wait for the server build to be successful.

7 If the build fails, drop everything and fix it.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

233Automating deployments

Depending on the development environment, there are several continuous integra-
tion server tools and technologies to employ. One popular continuous integration
stack includes

■ Subversion (SVN) for source control
■ NAnt for build automation
■ NUnit for testing
■ CruiseControl.NET for the continuous integration server

Which tool we use does not matter as much as the practices the tools enforce,
although we would like our tools to introduce as little friction as possible into the
development environment. If we have to wait for a slow or unreliable source control
server, our practices are less likely to be followed. Whichever build technology we
decide to use, the result of each build should be a single deployment file, checked in
to source control at the end of a successful server build. To enable push-button XCOPY
deployments, we’ll next look at some key NAnt features.

10.5.2 Enabling push-button XCOPY deployments

In an intranet environment, XCOPY deployments can be as simple as setting up a net-
work share on the deployed machine. In other situations, the deployment file,
whether it is an installer or self-contained .zip file, must be copied over manually or
pulled down from source control. Regardless, if the files can be pushed from a net-
work share, or pulled manually on the server, our deployment package will include

■ The complete application
■ The build tool, if used (NAnt)
■ A deployment script
■ A batch file to kick the process off

Our automated continuous integration build creates and checks in this deployment
package. When we have a deployment package in source control, it enables us to deploy
any version of our application as needed. With a tool like CruiseControl.net, it is pos-
sible to automate the deployment of the latest version of the application as needed.

 NAnt, along with the sister project NAntContrib, provides dozens and dozens of
tasks out of the box, which can be compiled together to create a single deployment
script. These tasks are

■ Source control tasks
■ IIS tasks
■ File and directory tasks such as creation, deletion, and copying
■ Zip tasks
■ XML manipulation tasks

With a manual process in place, we can start automating one step at a time with NAnt
tasks, until the entire deployment process is automated. Many teams already employ a

build process in the form of a Word document or wiki entry, detailing the manual steps.

234 CHAPTER 10 Hosting and deployment

It is only a matter of finding the corresponding NAnt task for each manual task, and the
deployment is automated. If no NAnt task exists for a particular operation, NAnt pro-
vides the Exec task, which can execute anything that can execute in the command line.
The key NAnt tasks for deployments include

■ unzip

■ copy

■ exec

■ xmlpoke

We’ll need the unzip task to unzip the deployment package originally checked in to
source control. If this is a manual pull of the deployment package, we can unzip the
package manually. The copy task is used to copy the complete application to the cor-
rect deployed directory, performing an XCOPY deployment in one automated task.
The exec task is used for a variety of scenarios, such as restarting IIS, stopping and
starting services, registering assemblies, and so on. The xmlpoke task is used to man-
age deployment configurations by manipulating key configuration files, such as the
Web.config file. In the next section, we’ll examine how to manage multiple deploy-
ment configurations with NAnt and xmlpoke.

10.5.3 Managing environment configurations

Development teams often deploy their applications in multiple environments. For any
given project, there are at least two environments: production and development.
Many teams integrate to one or more test environments before releasing to produc-
tion. Among these different environments, the deployment must change. Some envi-
ronments require merely a connection string change, and others require debug flags,
configuration values, email addresses, and more. In an automated deployment, the
deployment script must take into account the different environment settings. Notably,
it must know what environment it is deploying to, and what changes to make to the
application to match that environment.

 With NAnt, managing all of these environment configurations is straightforward.
Deployments are kicked off with a batch file, which merely starts NAnt. The deploy-
ment package zip file contains

■ Dev.bat
■ CommonDeploy.bat
■ deployment.build
■ NAnt\
■ website\
■ database\

The NAnt folder contains the entire runtime distribution of NAnt. We include the dis-
tribution to avoid an environmental setup step on every server to which we deploy.
The website folder contains the complete application that we XCOPY deploy to the

235Automating deployments

correct folder on the server. The deployment.build is the NAnt build script that con-
tains the complete deployment script. The Dev.bat file is a bootstrapper file that calls
CommonDeploy.bat. In listing 10.6, the bootstrapper file Dev.bat call overrides the
deploy directory and connection string properties by setting environment variables,
and then calls the CommonDeploy.bat script.

SET driverClass=NHibernate.Driver.SqlClientDriver
SET connectionString=Data Source=.\sqlexpress;Initial

Catalog=TODO;uid=sa;pwd=TODO
SET localConnectionString=Data Source=.\sqlexpress;Initial

Catalog=TODO;uid=sa;pwd=TODO
SET dialect=NHibernate.Dialect.MsSql2005Dialect
SET websiteTargetDir=\\TODO

SET databaseServer=TODO\sqlexpress
SET databaseName=TODO
SET databaseIntegrated=false
SET databaseUsername=sa
SET databasePassword=TODO

SET shouldReloadDatabase=true

CommonDeploy.bat

In the Dev.bat file, we set up the environment variables for the environment configu-
ration values (some of which still need to be filled in). With one CommonDeploy.bat
batch file that runs off environment variables, we can create additional bootstrapper
batch files for each target environment. The end of the Dev.bat batch script calls into
the CommonDeploy.bat script, which provides a common bootstrapper file on top of
NAnt, shown in listing 10.7 below.

nant\nant.exe
-buildfile:deployment.build
-D:should.reload.database="%shouldReloadDatabase%"
-D:driver.class="%driverClass%"
-D:connection.string="%connectionString%"
-D:local.connection.string="%localConnectionString%"
-D:dialect="%dialect%"
-D:website.target.dir="%websiteTargetDir%"
-D:database.server="%databaseServer%"
-D:database.name="%databaseName%"
-D:database.integrated="%databaseIntegrated%"
-D:database.username="%databaseUsername%"
-D:database.password="%databasePassword%"
-D:test.database.name="%testDatabaseName%"
-D:excel.server.path="%excelServerPath%"

This entire command is in a single CommonDeploy.bat file, calling NAnt, using envi-
ronment variables set up by a previous environment-specific batch file (Dev.bat in our

Listing 10.6 Setting the environment configuration in Dev.bat

Listing 10.7 Bootstrapper CommonDeploy.bat file overriding NAnt properties

SET command
declares variables

Use previously set
environment variables

236 CHAPTER 10 Hosting and deployment

case). The “-D” command-line switches for NAnt allow us to override properties with the
correct deployed values. Because our deployment database will most likely require a dif-
ferent connection string than our local configuration, we need to use NAnt to override
this value during deployment. A portion of the deploy.build file is in listing 10.8 below.

<target name="deploy">

 <call target="rebuildDatabase" if="${should.reload.database}" />

 <xmlpoke
 file="website/bin/hibernate.cfg.xml"
 xpath="${connection.string.path}"
 value="${local.connection.string}">
 <namespaces>
 <namespace prefix="hbm"
 uri="urn:nhibernate-configuration-2.2"></namespace>
 </namespaces>
 </xmlpoke>

 <copy todir="${website.target.dir}" overwrite="true"
 includeemptydirs="true" >
 <fileset basedir="website">
 <include name="**" />
 </fileset>
 </copy>

</target>

The first items to notice in this NAnt script are the XML attribute values in the format
${some.value.here}. These are NAnt properties, whose values were defined earlier
through our bootstrapper file. When the CommonDeploy.bat file executes, the com-
mand-line switches set these property values with the appropriate environmental set-
tings. Finally, the “deploy” target performs the actual deployment. An NAnt target is a
named group of tasks, similar to a method in C#.

 The actual CodeCampServer NAnt deployment script is considerably larger, but
performs these common deployment steps:

1 Applies environmental configuration to various configuration files
2 Rebuilds the local database
3 Populates the local database with test data
4 Removes the existing application
5 Copies files to target location

Each step in the deployment.build script first echoes a message to the console, for
informational and debugging purposes. Although CodeCampServer’s current build
script is large, it was built up over time to support the various configuration and
deployment needs. Deployment scripts can be as simple as copy and delete tasks; it
depends on each deployment scenario.

Listing 10.8 Deployment.build NAnt script with the deploy target

Change the
connection string

Call another target

Copy all
website files

237Summary

10.6 Summary
With the new routing abilities of ASP.NET MVC came new deployment challenges.
Although IIS 7 supports extensionless, pretty URLs out of the box, earlier versions of
IIS do not. However, we have a variety of deployment options with earlier versions of
IIS, some of which enable pretty URLs. URL rewriting is the most powerful of these
deployment options, as it opens up new scenarios in URL canonicalization and seam-
less resource management.

 When we configure our environment, we must devise a reliable deployment strat-
egy to ensure the right application is deployed with the correct configuration. At the
heart of a solid deployment strategy is continuous integration, which includes prac-
tices such as automated deployments and self-testing builds. With free, widely used
open source tools such as CruiseControl.NET, NAnt, NUnit, and others, we can build
an automated build and deployment server. By packaging NAnt, a build script, and a
bootstrap batch file, we can harness the flexibility and power of NAnt to deploy and
configure our application to multiple environments, up to and including production.

 Next, we’ll examine existing MVC frameworks, including the .NET based MonoRail
and Ruby on Rails, and examine how they compare with the newcomer, ASP.NET MVC.

Exploring MonoRail
 and Ruby on Rails
Model-View-Controller as a pattern emerged about 20 years ago in the Smalltalk
community. Since then, numerous representations of the MVC pattern for almost
every visual technology and language have developed. Combined with object-
oriented programming, the MVC pattern provides a powerful separation of con-
cerns between view technologies and the logic to interpret and react to user input.
The MVC pattern is certainly not new, nor is ASP.NET MVC the first MVC framework
to exist on the ASP.NET platform.

 Many alternative MVC frameworks position themselves as full-stack MVC frame-
works, where everything from database to deployment to hosting is included in the

This chapter covers
■ Castle MonoRail
■ Castle ActiveRecord
■ Castle Windsor
■ Ruby on Rails
■ ActionPack
238

framework. Full-stack frameworks can greatly reduce the amount of development

239MonoRail

time needed to create an application, as all components are designed to work
together to create one seamless development experience.

 In this chapter, we will examine MVC frameworks built for both .NET and other plat-
forms. We will dive into MonoRail, which is a popular MVC framework built on .NET and
is part of the larger Castle Project. Next, we will explore another popular web frame-
work, Ruby on Rails. Ruby on Rails is built on the dynamic language of Ruby, and uses
the strong opinions of the framework’s developers to guide the end user down well-
trodden paths. By the end of this chapter, you will be familiar with two major MVC
frameworks used today and their primary features, benefits, and advantages.

11.1 MonoRail
MonoRail is a .NET MVC implementation inspired by the Ruby on Rails ActionPack
component. MonoRail is part of a larger open source project, Castle. The Castle Proj-
ect includes several other enterprise application components, including an IoC con-
tainer implementation in Windsor/MicroKernel, as well as an Active Record
implementation. With the ActiveRecord piece, the Castle Project provides a powerful
full-stack web development framework.

 As MonoRail has seen more releases and has been under active development for
many years, it is natural that MonoRail provides a richer feature set than ASP.NET
MVC. But because many components in Castle are not coupled strictly to MonoRail,
many features of Castle and even MonoRail can be used in ASP.NET MVC. It is possible
to develop a MonoRail and ASP.NET MVC application side by side in one project. But
before we examine how to combine Castle features with ASP.NET MVC, let’s take a
closer look at what MonoRail provides.

11.1.1 Feature overview

Before we look at more advanced features of MonoRail, let’s look at a baseline appli-
cation that incorporates many of the same features as ASP.NET MVC. This example will
use quite a few features from MonoRail, which we will cover in detail. First, let’s look
at a simple controller that displays a list of people in listing 11.1:

[Layout("default")]
public class PeopleController : SmartDispatcherController
{
 public void List()
 {
 Person[] people = Person.FindAll();

 PropertyBag["people"] = people;
 }
}

We will skip all the configuration needed for MonoRail, as it is fairly similar to
ASP.NET MVC configuration. In listing 11.1, we created the PeopleController by

Listing 11.1 A simple PeopleController using MonoRail

B
C

D

E

240 CHAPTER 11 Exploring MonoRail and Ruby on Rails

declaring a class and inheriting from SmartDispatcherController C. SmartDis-
patcherController is similar in functionality to the base Controller class in ASP.NET
MVC, and holds references to common HttpContext runtime components as well as
other items needed for the view. Next, we declared a single action, List D. Any pub-
lic method becomes an action in a SmartDispatcherController, with automatic nam-
ing conventions tying URLs to actions. MonoRail also provides support for fine-
grained control over the action name relative to the method name. At the top of the
class, we tell MonoRail that we’re going to use the “default” layout with the Layout
attribute B. There will be a corresponding “Layout” view template in our project.

 Inside the action method, we use the Person class to query the database to return all
people. The Person class uses ActiveRecord, another Castle component that we’ll cover
in the next section. Finally, we add an entry in the PropertyBag E with the people
array returned from the database. PropertyBag is analogous to the ViewData property
in ASP.NET MVC. When we want to pass data to the view, we use the PropertyBag. One
important difference between actions in MonoRail and actions in ASP.NET MVC is that
the MonoRail actions return void, instead of an ActionResult object. In MonoRail all
actions alter the state of the controller, and that state is interpreted by the dispatcher
after all actions have been executed.

 MonoRail, like ASP.NET MVC, supports multiple view engines. For our example, we
will use the popular NVelocity view template framework. Listing 11.2 shows our simple
table of people:

<h2>People</h2>

#foreach($person in $people)
#beforeall
 <table class="datatable">
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Website</th>
 <th>Comments</th>
 </tr>
 </thead>
 <tbody>
#odd
 <tr style="background-color: #eee">
#even
 <tr>
#each
 <td>$person.GetName()</td>
 <td>$person.Contact.Email</td>
 <td>$person.Website</td>
 <td>$person.Comment</td>
#after </tr>

Listing 11.2 NVelocity template for listing people

B
C

D

E

F

241MonoRail

#afterall
 </tbody>
 </table>
#end

In the view template, we provide only the snippet of template code to show the list of
people. This template is part of a parent “default” layout, which we specified earlier in
our controller with the Layout attribute. In the template, the #foreach section does the
work. The #foreach section will loop over all the people in the $people identifier B,
which looks in the PropertyBag for the actual underlying object. The #beforeall sec-
tion creates the initial table HTML elements, the header columns, and the start of the
table body C.

 Next, we see two interesting sections: an #odd D and an #even E section. As
would be expected, the #odd section is used before each odd-numbered section, and
the #even is used before each even section. Next, we supply the individual table cells
with data in the #each section F. Each table cell uses the $person identifier, defined
in the #foreach section. The $person is a Person object, so we can access the proper-
ties and methods as if we were working in C#. The result of this template is shown in
figure 11.1.

 Because of the #odd and #even templates, we were able to apply specific row alter-
nating styles in our table. Unlike other ASP.NET controls, we were able to work effi-
ciently in HTML, putting the <tr> element only in the #odd and #even sections. The
Layout attribute allowed us to put our entire common HTML in one template, shown
in listing 11.3.

Figure 11.1 Displaying all people with the NVelocity templating engine

242 CHAPTER 11 Exploring MonoRail and Ruby on Rails

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/
xhtml11/DTD/xhtml11.dtd">

<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>Layout</title>
 <link rel="stylesheet" href="$siteRoot/css/stylesheet.css" />
 <link rel="stylesheet" href="$siteRoot/css/themes/green.css" />
</head>
<body>
 <div id="frame">
 <div id="frame-header"></div>
 <div id="content">
 <div id="header">
 <h1>Castle Code Camp</h1>
 </div>
 <div class="cleaner"></div>
 <div id="navigationWrapper">
 <div id="leftNavigationEndCap"></div>
 <ul id="navigationMenu">
 home
 schedule
 speakers
 sessions
 attendees
 register

 <div id="rightNavigationEndCap"></div>
 <div class="cleaner"></div>
 <div id="contentWrapper">
 $childContent
 </div>
 </div>
 </div>
 <div id="frame-footer"></div>
 </div>
</body>

Our custom content comes from the $childContent placeholder inside the <div>
content element. All views needing to use this common layout will use the Layout
attribute to specify the common default layout. Now that we have our first simple con-
troller, action, and view under our belt, let’s explore some of the more interesting fea-
tures of MonoRail.
FILTERS

In many MVC projects, we tend to see similar code appearing at the beginning or end-
ing of many actions. Whether it’s authorization code, session checks, or repository
calls, the code tends to clutter the actual work of the action. When this code is dupli-
cated at the beginning of many actions, we can create a filter to house our code. Fil-
ters are special classes we can use to decorate our controller actions to ensure the

Listing 11.3 The common default template

$siteRoot similar to
“~” in ASP.NET

$childContent variable
is a placeholder

243MonoRail

filter is executed at a specific time during the request. We can tell MonoRail to exe-
cute the filter before, after, or both before and after the action executes.

 In our application, we will create a filter that prevents nonadministrators from
viewing the List action we created in the last section. First, we need to create a class
that implements IFilter. IFilter has only one method, Perform, which returns a
Boolean that tells MonoRail whether or not the action should continue executing. In
listing 11.4, our filter checks the role and redirects if the user does not belong to the
correct role.

public class AuthorizationFilter : IFilter
{
 public bool Perform(ExecuteWhen exec, IEngineContext context,
 IController controller, IControllerContext controllerContext)
 {
 if (context.CurrentUser.IsInRole("Administrator"))
 {
 return true;
 }

 context.Response.Redirect("home", "index");
 return false;
 }
}

MonoRail will pass in any contextual information that the filter might need to per-
form its work, including when the filter is executing in the ExecuteWhen parameter,
execution context information such as the Session, Response, and Request objects
in the IEngineContext parameter, the executing IController, and the current
IControllerContext. In our example, we check to see if the CurrentUser belongs
to the Administrator role B. If so, we return true and our action continues execut-
ing. If not, we redirect the user to the index action on the home controller C,
returning false so that the action does not continue to execute.

 To use this filter on a controller, you’ll need to use MonoRail’s FilterAttribute
to decorate any controller where we want this filter to execute. You can decorate both
actions and controllers with a filter, depending on whether you want the filter to exe-
cute for every action in your controller, or only for specific actions. In listing 11.5, we
decorate the controller with our filter using the ExecuteEnum.BeforeAction parame-
ter, so that every action on this controller will have the AuthorizationFilter exe-
cuted before it.

[Layout("default")]
[Filter(ExecuteWhen.BeforeAction, typeof(AuthorizationFilter))]
public class PeopleController : SmartDispatcherController
{

Listing 11.4 Authorizing users and performing redirections

Listing 11.5 Decorating our controller to prevent unauthorized execution

B

C

B

 public void List()

244 CHAPTER 11 Exploring MonoRail and Ruby on Rails

 {
 Person[] people = Person.FindAll();

 PropertyBag["people"] = people;
 }
}

The Filter attribute allows us to tell MonoRail which filter to use, as well as when that
filter should execute. In listing 11.5, we directed MonoRail to execute the Authoriza-
tionFilter before each action B.

 There is still a slight problem with our filter: it gives zero feedback to the end user
that anything was wrong! Unauthorized users are silently redirected back to the home
page, whether or not intentionally accessing blocked actions. This can be very frustrat-
ing for an end user of the application, but easily remedied by use of the Flash, as we’ll
see in the next section.
FLASH

In the last section, we created an AuthorizationFilter that ensured that only autho-
rized users were able to access certain controllers and actions. If the user did not
belong to a certain role, we redirected them back to the home page. We did not give
them any indication of what happened or why, which would lead to their considerable
confusion and annoyance. To mitigate the user’s potential confusion, we can show
them a short message at the top of the screen. In the Web Forms days, we would use
Session to store these types of values. Because our error message needs to live until
the next action is executed, we need to store the error message in a durable container.

 Session presents a slight problem to developers for messages like these. What
about subsequent actions? If our view looks into Session for an item, we need to make
sure that we clear that value out, so that we don’t keep seeing error messages pop up
well after they occurred. For messages that need to live only until the next action, we
can use MonoRail’s Flash object. Flash is a dictionary-like object, much like Session,
whose contents are durable only until the next action is executed. Flash contents
don’t last beyond the next action, analogous to TempData in ASP.NET MVC. Both Flash
and TempData are implemented using Session under the covers.

 Flash is perfect for error messages, as we only want them displayed on the very
next (or current) action executed. For our AuthorizationFilter, we want a message
displayed after the user gets blocked from an action. In listing 11.6, we add an error
message to Flash.

public class AuthorizationFilter : IFilter
{
 public bool Perform(ExecuteWhen exec, IEngineContext context,
 IController controller, IControllerContext controllerContext)
 {
 if (context.CurrentUser.IsInRole("Administrator"))
 {
 return true;

Listing 11.6 Adding an error message to Flash
 }

245MonoRail

 context.Flash["error"] =
 "You are not authorized to view this page.";
 context.Response.Redirect("home", "index");
 return false;
 }
}

After our message is in Flash, we check for that item in our templates. The ideal place
for messages like these would be our default layout, as all other views use the default
layout at this time. In listing 11.7, we modify our default layout to show the Flash
error if it exists.

<div id="contentWrapper">

#if ($Flash.error)
 <div class="flash error">
 $Flash.error
 </div>
#end

 $childContent

</div>

Because we want the error message to display only when it actually exists, we wrap the
entire Flash output in a #if statement. Now that we have a meaningful error message
when the user attempts to navigate to an unauthorized action, our page will display
useful information, as shown in figure 11.2.

Listing 11.7 Displaying the Flash error message

Put message
in Flash

Cancel current
request

Display error
message from Flash

Figure 11.2 Error message displayed after an attempt to access an unauthorized action

246 CHAPTER 11 Exploring MonoRail and Ruby on Rails

After we refresh this page, the error message goes away. The contents of Flash live
only until the next action is executed, and are purged after the action executes. In
MonoRail, we have granular control over the Flash lifetime, so Flash messages can
live on or get purged earlier if needed. But for simple items like error messages, the
default Flash behavior provides nice behavior that Session will not.

 Up to this point, our application has behaved quite nicely. But exceptions are a
fact of life in .NET, and production-ready applications need to handle exceptions
gracefully. By default, an ugly yellow error page shows in the event of an unhandled
exception in ASP.NET. Although Web Forms allows for custom error pages to be
defined in Web.Config, there isn’t much built-in control for more complex behavior.
In the next section, we’ll look at unhandled exceptions and rescues.
RESCUES

Exceptions and errors are realities in application development, but they don’t have to
create an overtly negative user experience. Out of the box, Web Forms does not pro-
vide much to prevent a negative experience for unhandled exceptions. Even the
greenest of ASP.NET developers becomes familiar with the “yellow screen of death,”
the ugly default error page that ASP.NET displays in the event of an unhandled excep-
tion. Configuration allows us to create a custom error page, but any additional config-
uration is severely limited. ASP.NET allows custom error pages per HTTP status code,
but this is not nearly enough to provide custom error pages, as all exceptions generate
a 500 Internal Server Error status code. The custom error page is global to the site,
and cannot be easily configured per request.

 Because MonoRail is in complete control of the entire request, as well as executing
the controller actions, MonoRail is in a much better position to provide finer grained
control over exception pages. This control comes in the form of rescues. A rescue is
simply an attribute applied to either the controller or action level, with the name of
the view that should be displayed in the event of an exception. MonoRail also allows
exception-specific rescues, where different exceptions route to different rescue views,
as shown in listing 11.8.

[Layout("default")]
[Rescue("generalerror")]
[Rescue("specificerror", typeof(ApplicationException))]
public class ErrorController : SmartDispatcherController
{
 public void Error1()
 {
 throw new Exception("Something wicked this way comes.");
 }

 public void Error2()
 {
 throw new ApplicationException(
 "Something specifically wicked this way comes.");
 }

 [Rescue("actionerror")]

Listing 11.8 Rescues defined per exception and action

Rescue for all
exceptions

Rescue
for specific
exception type

Rescue declared
for specific action
 public void Error3()

247MonoRail

 {
 throw new SystemException("System error.");
 }
}

Not only do we define type-specific rescues on the controller, we can effectively over-
ride the default rescue by providing rescues at the action level. After we have the res-
cues defined in our code, we need to create the views for each corresponding rescue.
These rescue views reside in a special Rescues folder in the Views folder. Our simple
rescue view for the generalerror rescue is shown in listing 11.9.

<h2>Unexpected error happened</h2>

<p>
Please review the details below. If this error
continues, please contact your adminstrator.
</p>

<pre>
#set($exc = $context.LastException)
$exc.GetType().Name

Message:
$exc.Message
</pre>

The LastException property from the $context object contains the Exception object
originally thrown in the action B. We only show the exception type name, but all
information on the Exception object is available to us, including stack trace and other
custom data. Because our rescue view still uses the default layout defined at the con-
troller level, we get stylized error pages, as shown in figure 11.3.

Listing 11.9 Our default rescue view

B

Figure 11.3 General error rescue matching site design

248 CHAPTER 11 Exploring MonoRail and Ruby on Rails

Even with rescues, an end user might see the “yellow screen of death.” Rescues do not
preclude developers from creating a custom ASP.NET error page for their websites.
The probability for this page being shown is much lower, as most exceptions originate
from actions.

 Showing only static pages is not an interesting application. Data access and separa-
tion of concerns are necessary in any medium-to-large application. In the next sec-
tion, we’ll tour some of the additional components of the Castle framework to see how
Castle tackles these two areas.

11.1.2 ActiveRecord and Windsor

Besides MonoRail, the other two major components of the Castle framework are
ActiveRecord and Windsor. As Castle aims to be a full-stack web framework, it supplies
two other pieces to the web application puzzle besides the MVC component. Active-
Record fills in the puzzle pieces for data access, by providing a full-featured Active
Record pattern implementation. For managing dependencies and component life-
time, Castle supplies the Windsor container.
ACTIVERECORD

Databases and data access are nearly ubiquitous in web applications. But how should
we expose the database to our web application? The .NET Framework exposed Data-
Sets from the first release as a means of moving data to and from the database. Unfor-
tunately, DataSets are quite clunky, as their structure mirrors the physical structure of
the database. Moreover, individual components were not easily disconnected from
their source.

 Because .NET is a fully object-oriented platform, many developers took the route of
creating classes to represent their models in the application, while providing mapping
layers to map data in and out of these custom classes. As anyone who has written map-
ping layers can attest, the task of creating a robust mapping layer is quite daunting.
Most development frameworks mitigate the object-relational mapping (ORM) prob-
lem through open source libraries. .NET is no different in that regard, as several
mature ORM frameworks are available today.

 With the power of these ORM frameworks comes more responsibility on the devel-
oper’s side to understand how to configure and use these frameworks. For many
classes of applications with a simple model, it is not necessary to completely separate
the object model from the database mapping. The Active Record pattern is used in
those applications to provide one-to-one mapping structures from the object model to
the database. Additionally, the objects themselves contain all the mapping logic
needed to both hydrate and persist.

 In the Castle framework, an Active Record implementation, known as ActiveRe-
cord, is available to developers. ActiveRecord is built on top of a proven ORM frame-
work, NHibernate. Instead of configuration files, you decorate your ActiveRecord
classes with attributes to describe the mapping. Typically, ActiveRecord is used in
greenfield development, where the database does not yet exist.

249MonoRail

 We still have to provide XML configuration for ActiveRecord, but this is only for
configuration items such as the SQL dialect (NHibernate supports multiple databases,
including Oracle and SQL Server) and connection string. After these configuration
values are defined, we can start creating our ActiveRecord classes. Active Record pat-
tern implementations are usually simplified by inheriting from a base class. In Active-
Record’s case, the base class is ActiveRecordBase. This base class provides the Active
Record functionality, such as persistence, searching, deletion, and retrieval; Active-
RecordMediator is a preferred method over ActiveRecordBase in many cases. Our
first ActiveRecord class will be the Person object, used for both Speakers and Attend-
ees in the Code Camp Server application. First, we need to create the Person class, as
shown in listing 11.10.

[ActiveRecord]
public class Person : ActiveRecordBase<Person>
{
}

For most configurations, that’s all need to describe the table mapping for an entity. By
default, ActiveRecord will assume the same table name as the class name. This can be
overridden by setting properties on the ActiveRecord attribute. In addition to the
ActiveRecord attribute, the Person class inherits from the ActiveRecordBase<T>
class, which provides strongly typed functions such as Create, Delete, Save, Find,
and Update. But to use an ActiveRecord class, we’ll first need to define the primary
key of the entity. This is as simple as creating a property and decorating the property
with the PrimaryKeyAttribute, as shown in listing 11.11.

[ActiveRecord]
public class Person : ActiveRecordBase<Person>
{
 [PrimaryKey(PrimaryKeyType.GuidComb)]
 public virtual Guid Id { get; set; }

By applying the PrimaryKeyAttribute, we are directing ActiveRecord to use the Id
property as the identity of this entity, for both persistence and determining tran-
sience. If a Person is created, but not yet saved, it is in a transient state and its Id will
be the default value. We also supply an additional configuration setting, to use a spe-
cial Guid generation algorithm optimized for database persistence in a clustered
index B. No additional configuration files or modeling diagrams need to be
changed. The entire configuration for our database persistence for the Person class is
made up of these attributes. But a Person with only an Id is not interesting; let’s fill
out some of the other Person attributes. In listing 11.12, we add the rest of our Person
attributes, excluding the Contact:

Listing 11.10 Empty Person class tied to ActiveRecord

Listing 11.11 Adding a primary key to our ActiveRecord Person class

B

250 CHAPTER 11 Exploring MonoRail and Ruby on Rails

[ActiveRecord]
public class Person : ActiveRecordBase<Person>
{
 [PrimaryKey(PrimaryKeyType.GuidComb)]
 public virtual Guid Id { get; set; }

 [Property]
 public virtual string Website { get; set; }

 [Property]
 public virtual string Password { get; set; }

 [Property]
 public virtual string PasswordSalt { get; set; }

 [Property]
 public virtual bool IsAdministrator { get; set; }

 [Property]
 public virtual string Comment { get; set; }

Each new property we add to the ActiveRecord class is decorated with the Property-
Attribute B. The PropertyAttribute, among other things, contains mapping
options for cases where the property name does not match the database column
name. For the most part, ActiveRecord attributes directly expose the underlying
NHibernate configuration options, which are quite extensive. But for most scenar-
ios, especially in new application development, there is little need to provide addi-
tional configuration.

 We have one final piece of the puzzle for our Person entity: the Contact object.
The Contact object does not have an identity of its own. The Contact at its heart is a
group of related properties from the Person object. It is an example of a domain-
driven design value object, as covered in chapter 2. When using ORMs like NHibernate
and ActiveRecord, it is common to group a set of related properties into a mapping
called a component, which can then have its own behavior. With ActiveRecord, these
components are configured through the NestedAttribute, as seen in listing 11.13.

[ActiveRecord]
public class Person : ActiveRecordBase<Person>
{
 private Contact _contact = new Contact();

 [Nested]
 public virtual Contact Contact
 {
 get { return _contact; }
 set { _contact = value; }
 }

The NestedAttribute tells ActiveRecord that this property is not defined by a single

Listing 11.12 Filling out the other Person attributes

Listing 11.13 The nested Contact component configured on the Person class

B

Group columns
into a single type
database column, but is instead composed of many database columns. With this in

251MonoRail

mind, the Contact class does not need as many attributes as the Person class, nor
does it need to inherit from ActiveRecordBase, as seen in listing 11.14.

public class Contact : IEquatable<Contact>
{
 private string _firstName = string.Empty;
 private string _lastName = string.Empty;
 private string _email = string.Empty;

 [Property]
 public virtual string FirstName
 {
 get { return _firstName; }
 set { _firstName = value; }
 }

 [Property]
 public virtual string LastName
 {
 get { return _lastName; }
 set { _lastName = value; }
 }

 [Property]
 public virtual string Email
 {
 get { return _email; }
 set { _email = value; }
 }

The Contact class merely needs to configure its individual properties. The IEquat-
able implementation is functionality for other domain behavior, and is not needed by
components.

 We have looked at the basics of defining our ActiveRecord implementations, but
should the querying and saving reside directly in our controller actions? Ideally, we
would like to create individual service and repository classes that can house all these
concerns. In the next section, we will take a closer look at Castle Windsor, which
allows us to take advantage of SoC, the dependency inversion principle, but keep the
burden of locating and building objects off calling code.
CASTLE WINDSOR

In our controller actions, we are primarily concerned with handling input, handing
off to services to process the request, and finally choosing a view for display based on
the results of that operation. Although ActiveRecord provides true rapid application
development, we do not always want to see queries, saving, and other logic directly
inside our controller actions. If we do not take care to break out concerns into distinct
classes, our controller actions will quickly resemble the SaveButton_Click or
Page_Load events we have seen from Web Forms.

 Instead, we can break out these concerns into individual classes. For example,

Listing 11.14 The configured Contact component
instead of calling directly into our ActiveRecord class to retrieve all Person objects, we

252 CHAPTER 11 Exploring MonoRail and Ruby on Rails

can create a simple abstraction on top of this concept in the form of an IPerson-
Repository, as shown in listing 11.15.

public interface IPersonRepository
{
 Person[] FindAll();
}

The implementation of IPersonRepository is quite simple. It uses the ActiveRecord
FindAll method to return all Person objects in the database, as shown in listing 11.16.
There is a good argument for also using ActiveRecordMediator in the repository if
you prefer that your entities not be bound to ActiveRecord.

public class PersonRepository : IPersonRepository
{
 public Person[] FindAll()
 {
 return Person.FindAll();
 }
}

This implementation is not that interesting until we consider the impact on our Peo-
pleController, which needs to use the PersonRepository to find the list of people.
But how should the PeopleController get its instance of IPersonRepository?
Should it instantiate it itself, or use a Factory or Builder pattern? What happens if the
implementation of IPersonRepository has dependencies of its own? All of these deci-
sions are too much for the PeopleController to manage. Instead, we will assume that
“something” gives the IPersonRepository implementation to our PeopleController.
To make it clear that PeopleController depends on IPersonRepository, we will
make this dependency required by the constructor, as shown in listing 11.17.

public class PeopleController : SmartDispatcherController
{
 private readonly IPersonRepository _personRepository;

 public PeopleController(IPersonRepository personRepository)
 {
 _personRepository = personRepository;
 }

 public void List()
 {
 Person[] people = _personRepository.FindAll();

 PropertyBag ["people"] = people;
 }

Listing 11.15 The IPersonRepository interface

Listing 11.16 The PersonRepository implementation using ActiveRecord

Listing 11.17 The PeopleController using the IPersonRepository

FindAll comes from
ActiveRecordBase

IPersonRepository
is required

253MonoRail

The interesting aspect of this implementation is that the PeopleController is no lon-
ger directly coupled to how the Person array is found. We could have used ADO.NET,
LINQ to SQL, or NHibernate. By separating the database concern from People-
Controller, we have allowed each class to grow independently. As long the IPerson-
Repository contract is fulfilled, the PeopleController will function properly. But
how did the IPersonRepository get there? Something had to know to create the cor-
rect implementation at runtime and wire the PeopleController up properly. That
“something” is Windsor, Castle’s IoC container.

 Castle Windsor provides the wiring up of dependencies, as well as strong support
for lifetime management and runtime configuration of components. But before we
can take advantage of Windsor, we need to tell Windsor about the components in our
application. We have several options for providing this configuration, including pro-
grammatically, XML configuration files, or even a Boo domain-specific language
(DSL). For compile-time safety, we will go with the programmatic option. Our first
step is to create a WindsorContainer, which will house all our component registration
code, as shown in listing 11.18.

public class WebContainer : WindsorContainer
{
 public WebContainer()
 {
 RegisterFacilities();
 RegisterComponents();
 }

 private void RegisterComponents()
 {
 AddComponent("home.controller", typeof(HomeController));
 AddComponent("people.controller", typeof(PeopleController));
 AddComponent("error.controller", typeof(ErrorController));
 AddComponent("person.repository", typeof(IPersonRepository),
 typeof(PersonRepository));
 }

 protected void RegisterFacilities()
 {
 AddFacility("monorail", new MonoRailFacility());
 }
}

In the RegisterFacilities method, we register the MonoRailFacility, a Windsor
facility designed especially for MonoRail integration. This facility ensures that con-
troller lifetime is correct, and registers other components needed for managing con-
troller dependencies. We place all of our component registration code in the
RegisterComponents method. To register each component, we use the AddComponent
method. We register each controller, as well as the IPersonRepository interface
and implementation.

Listing 11.18 Our WebContainer with component registration

Add named
components

254 CHAPTER 11 Exploring MonoRail and Ruby on Rails

 At runtime, Windsor examines PeopleController and notes that it requires an
IPersonRepository implementation. Because we also registered the IPersonReposi-
tory interface and PersonRepository implementation, Windsor knows to wire up the
PersonRepository implementation to the PeopleController. Note that we never
specified that PeopleController should get a PersonRepository in our component
registration. Component registration is separate from dependency specification. It is
up to each component to expose its required dependencies, which is simply through a
constructor. In this fashion, the wiring up of dependencies is completely separate
from the use of the dependency, as we saw in our PeopleController.

 Finally, we need to reference Castle.MonoRail.WindsorIntegration.dll. Then cre-
ate the container and instruct MonoRail to use Windsor to resolve controller
instances. The most straightforward manner to do this is to modify our Global.asax
implementation, as shown in listing 11.19.

public class Global : System.Web.HttpApplication, IContainerAccessor
{
 private static IWindsorContainer _container;

 protected void Application_Start(object sender, EventArgs e)
 {
 _container = new WebContainer();
 }

 protected void Application_End(object sender, EventArgs e)
 {
 _container.Dispose();
 }

 public IWindsorContainer Container
 {
 get { return _container; }
 }
}

To expose our WebContainer implementation to MonoRail, we need to implement
the IContainerAccessor interface B. This interface has one member, the Container
property C. This Container property returns the private WebContainer instance,
which is created and disposed of at the Start and End application events. The final
piece to configure is in the Web.config file, to tell MonoRail to use Windsor integra-
tion, as shown in listing 11.20.

<monorail useWindsorIntegration="true">
<controllers>
<assembly>MonoRailExample</assembly>
</controllers>
<viewEngines viewPathRoot="Views">
<add type="Castle.MonoRail.Framework.Views.NVelocity.NVelocityViewEngine,

Listing 11.19 Providing the WindsorContainer to MonoRail through Global.asax

Listing 11.20 Configuring MonoRail to use Windsor integration

B

C

B

255Ruby on Rails

➥ Castle.MonoRail.Framework.Views.NVelocity"/>
</viewEngines>
</monorail>

With the useWindsorIntegration attribute value configured B, MonoRail will now
use the IContainerAccessor to access the IWindsorContainer. All controller instanti-
ation will go through our WebContainer.

 Many of these MonoRail and Castle components and features can be taken advan-
tage of directly inside ASP.NET MVC. In the next section, we will examine some of the
key features of Castle and MonoRail that can enhance an ASP.NET MVC application.

11.1.3 MonoRail and Castle features available in ASP.NET MVC

During the first few preview releases of ASP.NET MVC, many components of MonoRail
did not have had an equivalent counterpart in ASP.NET MVC. ASP.NET MVC has caught
up in many areas, but some components are still missing. Because of the modular
nature of ASP.NET MVC, however, quite a few features of MonoRail and Castle can be
used directly in an ASP.NET MVC application.

 In chapter 6, we learned how to integrate Castle Windsor as a ControllerFactory.
All of the power of Windsor is available by supplying the Windsor ControllerFactory
implementation to ASP.NET MVC.

 Additionally, all of the power of Castle ActiveRecord is available for use in ASP.NET
MVC. Because no Castle component (Windsor, MonoRail, or ActiveRecord) has a
dependency on another, using ActiveRecord or Windsor in an ASP.NET MVC applica-
tion will not force any dependency on MonoRail.

 Besides the major Castle components, many of the components of MonoRail are
available in ASP.NET MVC. These include the view engines, NVelocity and Brail. Origi-
nally part of MonoRail, both of these view engines have been adapted to execute
against ASP.NET MVC, and are part of the open source MVCContrib project. Eventually,
many other features of MonoRail will show up in ASP.NET MVC. For the missing fea-
tures, it would be easier to look toward MonoRail for inspiration, rather than trying to
adapt MonoRail components to run directly inside ASP.NET MVC. Often when we want
to use existing features of MonoRail in an ASP.NET MVC application, it is easier to use
MonoRail instead.

 For inspiration, MonoRail relied heavily on another MVC framework, Ruby on
Rails. In the next section, we’ll examine the core philosophy behind Rails and how
this philosophy shaped the design of Rails.

11.2 Ruby on Rails
Ruby on Rails is perhaps the most popular MVC framework used today. Shortly after
the 2004 release of the framework, the Rails community exploded to include numer-
ous community websites, dozens of books, and many conferences held worldwide.
Unlike many other MVC frameworks, Ruby on Rails is a harvested framework, one that
was extracted from a real-world application: 37signals’ application Basecamp. Because

Ruby on Rails is a harvested framework, all its features have been used in a production

256 CHAPTER 11 Exploring MonoRail and Ruby on Rails

environment and all are needed. Any feature that goes well outside the existing
design is probably not needed at all.

 Ruby on Rails incorporates two central design philosophies, convention over configu-
ration and the DRY (don’t repeat yourself) principle. Ruby on Rails is built to directly
support agile development and at its core is the Agile Manifesto. Unlike rapid applica-
tion development (RAD) frameworks like Web Forms or VB6, Rails supports testability
and SoC directly out of the box. Its design attempts to minimize duplication as much
as possible, so that the common scenarios require as little code as necessary to func-
tion properly.

 In this section, we will take a short tour through the major components and design
philosophies of Ruby on Rails. Although this section is not meant to be an introduc-
tion to the Ruby language, you will recognize its constructs because you’re already
familiar with the object-oriented paradigm.

11.2.1 Convention over configuration and “the Rails way”

The easiest way to explain the convention-over-configuration philosophy and the DRY
principle is to see a simple example in action. First, we will start with defining the
model. In our Code Camp domain, we have Person, Conference, Session, TimeSlot
and Track entities. Of these, Person and Conference are the core pieces of our
model. Without these, none of the other entities can exist. In an ASP.NET MVC appli-
cation, creating these initial models can be quite a daunting task. We need to create
the controller, the model class, a view, and some sort of mapping layer code. With NHi-
bernate, this might mean the repository and a mapping file. In Rails, creating a model
is accomplished through a generator.

 But before we even think about our model, we need a Rails site to work against.
After installing Ruby and Rails, we can create a Rails development site from the com-
mand line, as shown in listing 11.21.

D:\Dev>rails codecampserver_onrails
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create config/initializers
 create db
 create doc
 create lib
 create lib/tasks
 create log
 create public/images
 create public/javascripts
 create public/stylesheets
 create script/performance

Listing 11.21 Creating our Rails application from the command line
... more output

257Ruby on Rails

We removed the bulk of the output for brevity, but we can see that one command
from the command line creates the entire skeleton for our new application. The rails
command is far more powerful than the Visual Studio Add New Project command—it
creates the full-stack environment for our new application:

■ A home for our application in the “app” folder
■ Environment configuration
■ A home for the content of our application (JavaScript, images, CSS)
■ A bevy of helpful Ruby scripts used throughout development
■ Build scripts
■ Migration scripts
■ Tests

The initial starting point for a Rails application is light-years ahead of anything Visual
Studio can give you to start with. Now that we have our Rails application created, it is
time to generate our first model. In Visual Studio, we would normally accomplish this
through the File > New dialog, and create a single class. In some cases, a wizard might
pop up to give us more options. In Rails, we can use the scripts created for us in the
previous step to generate exactly what we need. In listing 11.22, we use the resource
generator to create a starting point for our Person model.

D:\Dev\codecampserver_onrails>ruby script\generate resource person
 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/people
 exists test/functional/
 exists test/unit/
 dependency model
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/person.rb
 create test/unit/person_test.rb
 create test/fixtures/people.yml
 create db/migrate
 create db/migrate/20081103024758_create_people.rb
 create app/controllers/people_controller.rb
 create test/functional/people_controller_test.rb
 create app/helpers/people_helper.rb
 route map.resources :people

The generator caused interesting things to happen. We can see that a person.rb file was
created in the app\models folder, as well as a test file for that model. The generator also
created a people folder in the views folder, correctly figuring out the plural for person.
A controller/test pair, a helper, and a migration script were also generated. That is quite
a few files for one command! The concepts of DRY and convention over configuration

Listing 11.22 Using a generator to create the Person model
are strong influencers for this design, as the same files are almost always needed each

258 CHAPTER 11 Exploring MonoRail and Ruby on Rails

time we create a new model. We are never forced to use these generators, but life can
be much easier if we follow the conventions laid out.

 One of the files created is the migrations file. In Rails, every database change is
managed through a migration script. This migration script is not a SQL script, but
rather an internal domain-specific language (DSL). That is, our migration script is
written in Ruby. By using Ruby instead of SQL, we are able to shield ourselves from the
different SQL dialects of the various SQL products supported by Ruby. In each migra-
tion script, we create both up and down scripts, so that our changes can be rolled back
at any time. Rails manages the migrations through the clever use of timestamps and
record keeping. Since the file was created with a timestamp, Rails can keep track of
which scripts should be executed on any developer or production environment.

 First, we will fill in the columns we need for our Person class, which included name
attributes, password attributes, and other information. In listing 11.23, we see our
basic Person table through the migration DSL.

class CreatePeople < ActiveRecord::Migration
 def self.up
 create_table :people do |t|
 t.string :first_name
 t.string :last_name
 t.string :email
 t.string :website
 t.string :password
 t.string :password_salt
 t.boolean :is_administrator
 t.timestamps
 end
 end

 def self.down
 drop_table :people
 end
end

We will not go too deeply into the Ruby language, but we can see in our example that
we defined two class methods, up and down. In the up method, we call the
create_table method to create a People table, with the initial columns. The Active-
Record::Migration class contains many methods to manipulate the database, such as
creating and dropping tables and columns. To run our migrations, we simply run the
migration script through, as shown in listing 11.24.

D:\Dev\codecampserver_onrails>rake db:migrate
(in D:/Dev/codecampserver_onrails)
== 20081103024758 CreatePeople: migrating

=====================================
-- create_table(:people)
 -> 0.2100s
== 20081103024758 CreatePeople: migrated (0.2100s)

Listing 11.23 The CreatePeople migration script

Listing 11.24 Running the migration script

Create
people table

Used to
upgrade a
database

Inherit from
ActiveRecord::
Migration

Used to downgrade
a database
============================

259Ruby on Rails

The rake db:migrate command executes the migration script to apply any new data-
base changes to our local database. When we run this script again, no migration
scripts execute because our database is up to date. In a team environment, we run the
migration script on a regular basis on each of our development machines when we
want to update our local database with the newest changes.

 Now that we have created a table, we can play around with our model in the Ruby
console. The Ruby console is a sandbox that lets us run Ruby code directly against our
model. We can create a new Person in our application, as shown in listing 11.25.

D:\Dev\codecampserver_onrails>ruby script\console
Loading development environment (Rails 2.1.2)
>> Person.create(:first_name => 'Larry', :last_name => 'Fine', :email =>

'larry@stooges.com')
=> #<Person id: 1, first_name: "Larry", last_name: "Fine", email:

"larry@stooges.com", website: nil, password: nil, password_salt: nil,
is_administrator: nil, created_at: "2008-11-06 01:42:34", updated_at:
"2008-11-06 01:42:34">

>>

The Person model class created by the generator earlier has quite a few helpful meth-
ods, similar to MonoRail’s ActiveRecordBase class. In listing 11.25, we call a class
method to create a person, with the specified attributes for first name, last name, and
email. We did not have to create a new Person object, and instead we passed a Hash of
name-value pairs for the Person attributes and values. The create method creates a
new Person and immediately saves it back to the database. If we want a transient Per-
son, we can use the initializer instead, as shown in listing 11.26.

>> curly = Person.new(:first_name => 'Curly', :last_name => 'Howard', :email
=> 'curly@stooges.com')

=> #<Person id: nil, first_name: "Curly", last_name: "Howard", email:
"curly@stooges.com", website: nil, password: nil, password_salt: nil,
is_administrator: nil, created_at: nil, updated_at: nil>

>> curly.save
=> true
>>

So far, nothing is much different than what we saw in the previous section on Mono-
Rail. Rails provides a better total package, such as a build script, but these are items
we can fairly easily put on top of our application. Where Rails truly shines is its
embrace of the dynamic nature of Ruby combined with the mantras of convention
over configuration and the DRY principle. We can see these two ideas in action if we
open up our Person model, created earlier by the generator. Listing 11.27 shows the
entire Person implementation.

class Person < ActiveRecord::Base

Listing 11.25 Using the Ruby console to create a new Person

Listing 11.26 Using the initializer and the save method to create a new Person

Listing 11.27 The entire, fully functional Person implementation

Inherit from ActiveRecord::Base

end

260 CHAPTER 11 Exploring MonoRail and Ruby on Rails

That’s it! Rails defines the Person class and inherits it from the ActiveRecord::Base
type, in just two lines. But in our previous examples, we saw a Person object with all sorts
of attributes, such as first_name, is_adminstrator, and others. Where did these extra
attributes come from? Since Ruby is a dynamic language, Rails adds these attributes to
our class dynamically. Conventions cover the details, leaving much less code for us to
write. In our MonoRail example, the Person class required dozens of lines of code, none
of them interesting.

 The base ActiveRecord type, ActiveRecord::Base, defines many helpful methods
for searching, lifetime management, and everything else we would expect from a fully
featured Active Record pattern implementation. But because Ruby is a dynamic lan-
guage, the Rails developers took advantage of its nature to create powerful conven-
tions to reduce the amount of code needed to get an application up and running. In
the next section, we will go deeper into Active Record with a more complex model
and more interesting querying scenarios.

11.2.2 Active Record

In the last section, we saw the power of convention over configuration and the DRY
principle applied to the dynamic nature of Ruby. In this section, we will see how these
two ideals shape Rails to support scenarios that, while difficult in a static language, are
easy and intuitive in Ruby. Up to this point our model consists of exactly one class,
Person. If we go back to our original CodeCampServer model, the relationships can
get fairly complex, as shown in figure 11.4.

Figure 11.4 The CodeCampServer entities with relationships shown

261Ruby on Rails

It is not entirely clear from figure 11.4, which only shows explicit associations through
properties and fields, but there are more relationships defined than are programmed
for. For example, the Track entity has a Conference, but does a Conference not have
many Tracks? That relationship must be traversed through a repository or through
direct querying. The same problem can be seen with both Session and TimeSlot; we
cannot navigate the web of relationships.

 First, we will focus on the relationship between Conference and TimeSlot. A Con-
ference has many TimeSlots, and each TimeSlot belongs to a Conference. When we
create the table for TimeSlot in our migration script, we must include this relation-
ship in the definition. Our Conference schema definition will be fairly straightfor-
ward, as shown in listing 11.28.

class CreateConferences < ActiveRecord::Migration
 def self.up
 create_table :conferences do |t|
 t.string :key
 t.string :name
 t.date :start_date
 t.date :end_date

 t.timestamps
 end
 end

 def self.down
 drop_table :conferences
 end
end

We added the name, key, and start and end dates for our Conference model. For our
TimeSlot schema definition, we will need to add the foreign key for Conference
because a TimeSlot belongs to a Conference. Listing 11.29 shows the TimeSlot defini-
tion, with the foreign key back to Conference.

class CreateTimeSlots < ActiveRecord::Migration
 def self.up
 create_table :time_slots do |t|
 t.string :purpose
 t.datetime :start_time
 t.datetime :end_time
 t.integer :conference_id

 t.timestamps
 end
 end

 def self.down
 drop_table :time_slots
 end

Listing 11.28 The Conference schema migration script

Listing 11.29 TimeSlot schema migration script with foreign key for Conference
end

262 CHAPTER 11 Exploring MonoRail and Ruby on Rails

To wire up the relationships between the two entities, adding this column will not be
enough. Instead, we will need to add information to each model, describing the rela-
tionship for each endpoint. Looking back at our relationship diagram, we see that a
Conference has many TimeSlots, and a TimeSlot belongs to a Conference. To add
this relationship to our model, we need to change the Conference and TimeSlot, as
shown in listing 11.30.

class Conference < ActiveRecord::Base
 has_many :time_slots

end

class TimeSlot < ActiveRecord::Base
 belongs_to :conference

end

Notice how easy it is to read the models and interpret the relationship between the
two. A Conference has many TimeSlots, and this is represented by the has_many asso-
ciation in our model. On the other side of the relationship, a TimeSlot belongs to a
Conference, so we see the belongs_to association to Conference. Because of the Rails
convention, Rails knows to look for a column called conference_id on the TimeSlot
table. We are not forced to use these conventions, and we can override the defaults as
needed. In most cases, it is simpler to accept the conventions and move on to building
the application.

 Now, it would not be a Rails feature if it did not incorporate the dynamic nature of
Ruby to provide rich support for this association. We merely described the relation-
ship, but how do we develop against these new relationships? First, we need to create a
new Conference and TimeSlot, as shown in listing 11.31.

>> Conference.create(:key => "UCON", :name => "UberCon", :start_date =>
Date.new(2007, 10, 1), :end_date => Date.new(2007, 10, 3))

=> #<Conference id: 1, key: "UCON", name: "UberCon", start_date: "2007-10-
01", end_date: "2007-10-03", created_at: "2008-11-09 23:09:22",
updated_at: "2008-11-09 23:09:22">

>> TimeSlot.create(:purpose => "Morning", :start_time => DateTime.new(y=2007,
m=10, d=2, h=9, min=0, s=0), :end_time => DateTime.new(y=2007, m=10,
d=2, h=10, min=0, s=0))

=> #<TimeSlot id: 1, purpose: "Morning", start_time: "2007-10-02 09:00:00",
end_time: "2007-10-02 10:00:00", conference_id: nil, created_at: "2008-
11-09 23:29:14", updated_at: "2008-11-09 23:29:14">

In listing 11.31, we created a Conference and TimeSlot, but did not associate the two.
To do so, we can grab the TimeSlot we just created and append it to the Conference’s
TimeSlots, as shown in listing 11.32.

Listing 11.30 The Conference and TimeSlot models include the relationship.

Listing 11.31 Creating a Conference and TimeSlot

“one” side of
one-to-many

“many” side of
one-to-many

263Ruby on Rails

>> @morning = TimeSlot.find(1)
=> #<TimeSlot id: 1, purpose: "Morning", start_time: "2007-10-02 09:00:00",

end_time: "2007-10-02 10:00:00", conference_id: nil, created_at: "2008-
11-09 23:29:14", updated_at: "2008-11-09 23:29:14">

>> Conference.find(1).time_slots << @morning
=> [#<TimeSlot id: 1, purpose: "Morning", start_time: "2007-10-02 09:00:00",

end_time: "2007-10-02 10:00:00", conference_id: 1, created_at: "2008-11-
09 23:29:14", updated_at: "2008-11-09 23:31:16">]

The append operator (<<) lets us append the TimeSlot we created onto the Confer-
ence. The bidirectional association is maintained for us as well. We can inspect the
"Morning" TimeSlot and see that the Conference was associated at that end of the
relationship as well, as shown in listing 11.33.

>> @morning.conference
=> #<Conference id: 1, key: "UCON", name: "UberCon", start_date: "2007-10-

01", end_date: "2007-10-03", created_at: "2008-11-09 23:09:22",
updated_at: "2008-11-09 23:09:22">

ActiveRecord and Rails start to show their power in the ability to create smart, scoped
searches. We might not know the specific TimeSlot ID for the "Early Morning"

TimeSlot, but we can easily do a find for it, as shown in listing 11.34.

>> Conference.find(1).time_slots.find_by_purpose("Early Morning")
=> #<TimeSlot id: 3, purpose: "Early Morning", start_time: "2007-10-02

08:00:00", end_time: "2007-10-02 09:00:00", conference_id: 1,
created_at: "2008-11-10 00:58:18", updated_at: "2008-11-10 00:58:30">

Instead of searching for all TimeSlots with a purpose of "Early Morning", only the
TimeSlots of the Conference with ID of 1 are returned. Listing 11.34 also showcases
the dynamic nature of Ruby, as the find_by_purpose method did not exist on our
original model. It was generated dynamically, and convention pointed to search by the
purpose attribute. Convention combined with the dynamic nature of Ruby results in a
powerful mechanism derived from succinct code. We merely set up the table schemas
and described the relationship, and Rails and ActiveRecord did the rest. We only
showcased one type of relationship, the "has_many", but several other types of rela-
tionships are supported, each with its own features added strictly to support scenarios
for those types of relationships.

 We set up a preliminary model for our CodeCampServer, but we have yet to display
any HTML. In the next section, we will take a closer look at the Rails view/controller
component, ActionPack.

Listing 11.32 Appending the "Morning" TimeSlot to the UberCon Conference

Listing 11.33 Maintaining both ends of the relationship

Listing 11.34 A scoped search for a specific TimeSlot

264 CHAPTER 11 Exploring MonoRail and Ruby on Rails

11.2.3 ActionPack

In the previous section, we looked at the ActiveRecord component of Rails, and dis-
covered how to create rich models with little code. These models are not very useful if
no end user can interact with them. With Rails, this interaction is coordinated
through ActionPack, which manages the request cycle and routing. A user types a URL
or clicks a link to generate a request to Rails. Through routing configuration, Action-
Pack will direct the request to the correct action on the correct controller. After the
action executes on the controller, the view generates the HTML that eventually travels
back down to the client. In addition to the routing component, ActionPack includes a
controller and view component, aptly named ActionController and ActionView.

 Part of our resource generator in the previous section generated entries in the
routing configuration and created a blank controller and view. This initial routing
configuration, which we will not need to change, is shown in listing 11.35.

ActionController::Routing::Routes.draw do |map|
 map.resources :time_slots

 map.resources :conferences

 map.resources :people

 map.connect ':controller/:action/:id'
 map.connect ':controller/:action/:id.:format'
end

Because many requests will follow the same format, the first map.resources calls set
up resource mappings for several default actions, such as new, create, show, and oth-
ers. Like ASP.NET MVC, routes are defined in order of precedence, so the less specific
rules are defined last. In our Rails CodeCampServer, we want to show a single Confer-
ence, and a table with all of its TimeSlots. We could additionally provide links for
Sessions and Attendees, as well as actions for registering. In our simplified applica-
tion, we will just look at the Conference and TimeSlot relationship.

 For our simple Conference page, we first need to handle the request for a single
Conference in an action on our ConferenceController. We need to grab the ID passed
into the URL, and use ActiveRecord to find that Conference, as shown in listing 11.36.

class ConferencesController < ApplicationController
 def show
 @conference = Conference.find(params[:id])
 end
end

The result of the find is put into a variable, which will be available for the view to use.
For our view, which will look similar to the Web Forms views in ASP.NET MVC, we will

Listing 11.35 Routing configuration

Listing 11.36 Defining the show action to find a single Conference

Default route similar
to ASP.NET MVC

An action
method

Inherit from
ApplicationController
use embedded Ruby in HTML to create our final HTML delivered to the client. The

265Ruby on Rails

view, whose name and location match the action name and controller name, is shown
in listing 11.37.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/
xhtml11/DTD/xhtml11.dtd">

<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>Layout</title>
 <%= stylesheet_link_tag 'style-2column' %>
 <%= stylesheet_link_tag 'master' %>
</head>
<body>
 <div id="header">
 <div id="logo">
 <h1>Rails Code Camp</h1>
 <p>Powered by
 Code Camp Server
 </p>
 </div>
 <div id="menu">

 Home
 Schedule
 Speakers
 Attendees
 Sponsors

 </div>
 </div>
 <div id="page">
 <div id="content">
 <h1><%= @conference.name %></h1>
 <h2>aka <%= @conference.key %></h2>
 <p>
 kicks off at <%= @conference.start_date %>

 shuts it down at <%= @conference.end_date %>
 </p>
 <h3>Time Slots</h3>
 <table>
 <thead>
 <tr>
 <th>Purpose</th>
 <th>Start Time</th>
 <th>End Time</th>
 </tr>
 </thead>
 <tbody>
 <% for time_slot in @conference.time_slots %>
 <tr>

Listing 11.37 The full Show Conference view

266 CHAPTER 11 Exploring MonoRail and Ruby on Rails

 <td><%= time_slot.purpose %></td>
 <td><%= time_slot.start_time %></td>
 <td><%= time_slot.end_time %></td>
 </tr>
 <% end %>
 </tbody>
 </table>

 </div>

 <div id="sidebar">
 </div>
 </div>
 <div id="footer">
 <!-- Footer -->
 </div>
</body>
</html>

Embedded Ruby looks nearly identical to Web Forms, with the exception that we are
using Ruby instead of C#. We use output embedding tags (<%= %>) to directly output
strings, for the Conference name, key, and dates. Without the equals, the tags become
evaluation embedding tags, where we can put any Ruby code. In this case, we used
evaluation embedding to create a for loop to loop over the Conference’s TimeSlots.
The final rendering of this page is modified in listings 11.38 and 11.39 and can be
seen by navigating to http://localhost:3000/conferences/show/1 and in figure 11.5.
Figure 11.5 Our view conference page

267Ruby on Rails

The rendering in figure 11.5 shows the time slots in the correct sort order. We did not
sort them directly in the view, because TimeSlot order is a fundamental aspect of the
relationship between a Conference and its TimeSlots. ActiveRecord lets us manipu-
late this ordering aspect, as shown in listing 11.38.

class Conference < ActiveRecord::Base
 has_many :time_slots, :order => "start_time ASC"

end

We supply a small SQL fragment describing the correct order of TimeSlots belonging
to a Conference, which now corrects the order of TimeSlots we see in the Show Con-
ference view. Much like ASP.NET MVC and MonoRail, ActionView allows us to com-
bine common views into layouts. Because all pages show the same layout, we will
create a view with a convention-based name, called application.html.erb. We could
create controller-specific layouts as needed, but for our purposes, a site-wide layout is
more than sufficient. Our application layout is shown in listing 11.39, which looks very
similar to the master page in our ASP.NET MVC application. The main difference is the
use of the Ruby yield keyword to denote child content.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/
xhtml11/DTD/xhtml11.dtd">

<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1" />
 <title>Rails Code Camp Server 1.0</title>
 <%= stylesheet_link_tag 'themes/green' %>
 <%= stylesheet_link_tag 'stylesheet' %>
</head>
<body>
 <div id="frame">
 <div id="frame-header"></div>
 <div id="content">
 <div id="header">
 <h1>rails code camp server</h1>
 </div>
 <div class="cleaner"></div>
 <div id="navigationWrapper">
 <div id="leftNavigationEndCap"></div>
 <ul id="navigationMenu">
 home
 schedule
 speakers
 sessions
 attendees
 register

Listing 11.38 The new Conference to TimeSlot relationship incorporating order

Listing 11.39 The application layout

Include sort order
in association

268 CHAPTER 11 Exploring MonoRail and Ruby on Rails

 <div id="rightNavigationEndCap"></div>
 <div class="cleaner"></div>
 <div id="contentWrapper">
 <%= yield %>
 </div>
 </div>
 </div>
 <div id="frame-footer"></div>
 </div>
</body>
</html>

With the child content removed, our Show Conference view becomes small, and
rather easy to understand without the entire page layout HTML getting in the way. The
final Show Conference view is shown in listing 11.40.

<div class="dataDoubleWideContainer mt10">
 <h2><%= @conference.name %></h2>
 <h3>aka <%= @conference.key %></h3>
 <p>
 kicks off at <%= @conference.start_date %>

 shuts it down at <%= @conference.end_date %>
 </p>
 <h4>Time Slots</h4>
 <table class="display">
 <thead>
 <tr>
 <th>Purpose</th>
 <th>Start Time</th>
 <th>End Time</th>
 </tr>
 </thead>
 <tbody>
 <% for time_slot in @conference.time_slots %>
 <tr>
 <td><%= time_slot.purpose %></td>
 <td><%= time_slot.start_time %></td>
 <td><%= time_slot.end_time %></td>
 </tr>
 <% end %>
 </tbody>
 </table>
</div>
<div class="cleaner"></div>

In this section of Ruby on Rails, we barely scratched the surface of capabilities in each
of the major areas of Rails. Because MonoRail was inspired by Rails, many of the features
in MonoRail have their own counterpart in Rails, such as validation, partials, flash, fil-
ters, as well as other features not found in MonoRail. The combination of Ruby, con-
vention over configuration, and the DRY principle form a powerful full-stack framework.

Listing 11.40 The condensed Show Conference view

269Summary

11.3 Summary
MVC as a pattern extends back several decades, and has existed in the web space since
nearly the beginning of the web. Since ASP.NET MVC leaned heavily on existing MVC
frameworks, including MonoRail and Ruby on Rails, an examination of these frame-
works is helpful for new ASP.NET MVC developers to understand the mistakes, chal-
lenges, and problems solved by preexisting communities and frameworks. These
existing frameworks will continue to serve as bellwethers in MVC framework design,
and many features will cross-pollinate among the different frameworks. For many fea-
tures not yet incorporated into ASP.NET MVC, application developers can look to exist-
ing frameworks for clues on how to solve problems that most likely arose years before
in other communities.

 In some cases, another framework might be a better fit for a given situation.
Because each MVC framework has different advantages and disadvantages, only
through understanding which options are available can we make an informed deci-
sion on which framework to use. In this chapter, we reviewed two of the more widely
used MVC frameworks, and gained a deeper understanding of the motivation behind
each framework as well as their influence on ASP.NET MVC design.

 In the next chapter, we will examine a collection of best practices harvested from
CodeCampServer and other ASP.NET MVC applications in production today.

Choosing an MVC framework
A quick, but rather useless recommendation is “it depends.” Each framework has its
strengths and weaknesses, and often the platform decision is out of your hands. Ad-
ditionally, you will have to consider other aspects such as deployment, support, your
current team’s skills, and so on. If you are already on a team developing with
ASP.NET, it will be a nontrivial undertaking to switch to Ruby on Rails.

MonoRail, with its integration with Windsor and ActiveRecord, provides a more com-
plete solution than ASP.NET MVC. Because ASP.NET MVC is a Microsoft product, you
will have access to a much wider community, even if MonoRail is more mature by
many years. Some companies, for whatever reason, tend to discourage open source
tooling, even when there is commercial support available for MonoRail.

The Ruby on Rails question will be more difficult. Rails is a complete ecosystem, and
one that currently does not run on .NET. If you choose Rails, you will be switching
programming languages, IDEs, hosting environments, and so on. The Rails community
is huge, with bookstores dedicating large sections to books on the subject. If your IT
shop is 100 percent Microsoft, the decision has already been made for you. Even in
those situations, we encourage you to try out Rails on personal or pet projects, as
Rails is built to get you up and going quickly.

Best practices
Although the ASP.NET MVC Framework is young in the .NET space, the MVC pattern
applied to web applications is not. We have presented thus far techniques already
used in many other MVC Frameworks, but some areas in the ASP.NET MVC Frame-
work require extra attention. The ASP.NET MVC Framework is open-ended and
extensible for customization, but not all usage and customization is appropriate.
Not every approach to solving a problem will lead to elegant, maintainable results.
Many of the examples on the web work well for simple problems, but break down
quickly in a large production application or slightly complex small applications. In
this chapter, we examine the major feature areas and extension points of ASP.NET
MVC to discover what parts to use, what parts to avoid, and how to get the most out
of our design by following best practices.

This chapter covers
■ Designing maintainable controllers, filters, and actions
■ Building maintainable views with minimum duplication
■ Designing and testing routes
■ Testing MVC components
270

271Controllers

12.1 Controllers
As the entry point for the main control of a request, controllers that lack careful design
can quickly resemble their predecessors (the old Page_Load event) in complexity and
opacity. Duplication shows up early in an application with even the slightest complexity,
and the best approach is to remove different kinds of duplication. Multiple copy-and-
paste commands add up and obscure the true intent of an action method. Using the
wrong technique to remove duplication can wind up hiding the mechanism of a
request and leading to difficulty in maintenance and troubleshooting.

 The designers of ASP.NET MVC studied many mature MVC frameworks to deter-
mine the best method of providing extension points and removing duplication.
When a request comes in from the outside world, we might have a group of actions
we want to restrict to certain roles. Or entire areas of our application might require
an authenticated user. Patterns, extensions, and techniques can help a great deal
in such situations. In this section, we look at ways to make our controllers easier
to develop and maintain. The first of these patterns is the Layer Supertype, applied
to controllers.

12.1.1 Layer Supertype

As an application grows, patterns emerge in your controllers—a filter applied to a
common group of controllers, or a set of views that need the same data. Because a
controller is just a class, nothing technically stops us from using additional supertypes
between our concrete controller and the Controller type. In these cases, we can
employ the Layer Supertype pattern. As the name suggests, a Layer Supertype is a
supertype (base class) for all types in that layer. This supertype contains all the com-
mon behavior that applies across an entire layer.

 In CodeCampServer, the Layer Supertype is the SmartController type, shown in
figure 12.1.

AdminController

SmartController
Class

SmartController

Controller
Abstract Class

HomeController

SmartController
Class

Controller

ControllerBase
Abstract Class

LoginController

SmartController
Class

Figure 12.1
The Layer Supertype
SmartController
serving as our new
base Controller
class

272 CHAPTER 12 Best practices

One popular use for a Layer Supertype in an MVC application is to gather common
filters in one location. Because filters applied to a base type at the class level also apply
to derived types, a Layer Supertype is a great choice to use as a common filter. The
SmartController uses several filters:

■ Authentication filter
■ Url referrer filter
■ Assembly version filter
■ User group filter

To display the view, the authentication filter adds the current user in session to View-
Data. Athough we want this common behavior across many actions and views, it would
be painful to put this filter on every controller. We would likely forget some controllers.
In addition, maintenance of a filter declared on a large group of controllers is duplica-
tion that should be avoided. The other filters perform similar operations, and they
place relevant information into ViewData so that the views can use the information.

 A Layer Supertype is trivial to create: you declare a new controller, mark it as
abstract, and place it between the concrete controller type and the MVC base Con-
troller type. Any new controller you create can then inherit directly from our Layer
Supertype, as shown in listing 12.1.

public class ScheduleController : SmartController

[AuthenticationFilter]
public abstract class SmartController : Controller

Instead of always beginning an application using the Layer Supertype pattern, keep in
mind that it is most appropriate for larger applications or complex layers within an
application. Trivial applications often do not need this pattern, but CodeCampServer
is an example of an application that benefits from it. Every concrete controller has the
SmartController in its inheritance chain. In addition to common filters, Layer Super-
types also hold common helper methods or properties.

12.1.2 Filters

As described in chapter 3, filters allow us to implement common behavior among
many actions or controllers. Not all common behavior belongs in a filter. Filters are
only one way of eliminating duplication in ASP.NET MVC. Filters are best at eliminat-
ing duplication in action methods and ensuring common behavior is executed among
common controllers and actions.

 In many web applications, access to certain areas is restricted to authenticated
users. If anonymous users attempt to access these areas, they are redirected from these
secured resources. To create this authentication, we need two items. First we need an
IAuthorizationFilter implementation to perform the filter behavior. Second, we
need an implementation of the AuthorizeAttribute to trigger our custom behavior.

Listing 12.1 CodeCampServer Layer Supertype and a derived controller
The custom filter is shown in listing 12.2.

273Controllers

public class EnforceAuthenticationFilter : IAuthorizationFilter
{
 private readonly IUserSession _userSession;

 public EnforceAuthenticationFilter(IUserSession userSession)
 {
 _userSession = userSession;
 }

 public void OnAuthorization(AuthorizationContext filterContext)
 {
 if (_userSession.GetCurrentUser() == null)
 {
 filterContext.Result = new RedirectResult ("/");
 }
 }
}

Our authentication filter depends on an IUserSession B, whose implementation is
merely a wrapper around Session. We need to implement one IAuthorizationFilter
method—OnAuthorization. In this method, the AuthorizationContext gives us
access to contextual data about the request and inherits from ControllerContext. The
AuthorizationContext also gives us a Result property that allows us to provide an
optional ActionResult to execute. In the previous example, we redirect the user to the
home page by setting the Result property to a new RedirectResult C. This happens
only when we don’t have a current user. Otherwise, the filter does nothing, and the
request proceeds as normal.

 To apply this filter to our controllers and actions, we need an AuthorizeAttribute
implementation, shown in listing 12.3.

public class EnforceAuthenticationAttribute : AuthorizeAttribute
{
 public override void OnAuthorization(
 AuthorizationContext filterContext)
 {
 var authFilter = IoC.Resolve<EnforceAuthenticationFilter>();

 authFilter.OnAuthorization(filterContext);
 }
}

The EnforceAuthenticationAttribute inherits from AuthorizeAttribute, overrid-
ing the OnAuthorization behavior to instantiate and call into our EnforceAuthenti-
cationFilter for the actual behavior we want. The final step is to apply our new
attribute to the controllers we want to enforce authentication on, as shown in list-
ing 12.4.

Listing 12.2 Our custom authorization filter implementation

Listing 12.3 Custom authorization filter delegating to the filter implementation

B

C

http://watin.sourceforge.net/
http://wtr.rubyforge.org/
http://seleniumhq.org/
http://docs.jquery.com/QUnit
http://www.gallio.org/

274 CHAPTER 12 Best practices

[EnforceAuthentication]
public class SecuredController : Controller
{

With this filter applied, we prevent anonymous users from taking any action on our
SecuredController, as well as any derived controllers. How do we know when it’s nec-
essary to create a filter? Common, orthogonal behavior fits best into action filters. In
listing 12.3, authorization happens for a wide variety of controllers and actions, but
this behavior often does not relate to the other behavior in an action. This orthogonal
behavior is best abstracted through a filter. In other cases, copying and pasting the
same code between actions is another sign that a filter might be appropriate.

 Filters can be overused and misapplied, especially as their behavior is not as
explicit as code inside an action method. But applied correctly, filters are a great way
to add site-wide behavior with little code and little impact on your controllers.

12.1.3 Smart binders

The model binders in ASP.NET MVC are useful out of the box. They do a great job of
taking request and form input and hydrating fairly complex models from them. But a
custom binder can also remove another common form of duplication—loading an
object from the database based on an action parameter. Most of the time, this action
parameter is the primary key of the object or another unique identifier. Instead of
putting this repeated data access code in all of our actions, we can use a custom model
binder that can load the persisted object before the action is executed. Our action can
then take the persisted object type as a parameter instead of the unique identifier.

 One problem with the MVC model binder implementation is that we can match

Listing 12.4 Decorating our controller with the custom authorization attribute

Why separate filters from attributes?
Many examples show the work of the filter being done directly inside of the filter at-
tribute. The custom filter attribute class is the only piece required to implement a cus-
tom filter, but we often create a separate filter from the attribute because of the
nature and limitations of attributes. If you choose to use a container or factory to lo-
cate dependencies, you will not have control over the instantiation of your attribute
class. One common workaround is to define two constructors, one that takes the fil-
ter’s dependencies, and one that calls into the container or factory to supply imple-
mentations at runtime. This leads to nontrivial bugs, as your attribute’s constructor
can be called at nonobvious times, such as in reflection scenarios used by unit test-
ing frameworks.

If your filter does not use dependencies, having two separate classes is overkill. But
as soon as you start including dependencies in your filter, take the extra step of sep-
arating the attribute from the filter.
our custom model binder for a single type. In an application with dozens of entities, it

275Controllers

is easy to forget to register the custom model binder for every type. For example,
CodeCampServer uses a common base type (PersistentObject) for all entities in the
system. Ideally, we could register the custom model binder just once, or just leave it up
to each custom binder to decide whether or not it should bind.

 To accomplish this, we need to replace the default model binder with our own
implementation. Additionally, we can define an interface, IFilteredModelBinder, for
our new binders, as shown in listing 12.5.

public interface IFilteredModelBinder : IModelBinder
{
 bool IsMatch(Type modelType);
}

The IFilteredModelBinder inherits from the MVC IModelBinder interface, and adds
a method through which implementations can perform custom matching logic. In
our case, we can look at the base type of the model type passed in to determine if it is
a PersistentObject type. To use custom filtered model binders, we need to create a
DefaultModelBinder implementation, as shown in listing 12.6.

public class SmartBinder : DefaultModelBinder
{
 private readonly IFilteredModelBinder [] _filteredModelBinders;

 public SmartBinder (
 params IFilteredModelBinder [] filteredModelBinders)
 {
 _filteredModelBinders = filteredModelBinders;
 }

 public override object BindModel (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 foreach (var modelBinder in _filteredModelBinders)
 {
 if (modelBinder.IsMatch(bindingContext.ModelType))
 {
 return modelBinder.BindModel (controllerContext,
 bindingContext);
 }
 }

 return base.BindModel (controllerContext, bindingContext);
 }
}

Our new SmartBinder class takes an array of IFilteredModelBinders B, which we’ll
fill in soon. Next, it overrides the BindModel method C. BindModel loops through all

Listing 12.5 The IFilteredModelBinder interface

Listing 12.6 A smarter model binder

B

C

D

E

of the supplied IFilteredModelBinders, and checks to see if any match the ModelType

276 CHAPTER 12 Best practices

from the ModelBindingContext D. If it is a match, we execute and return the result
from BindModel for that IFilteredModelBinder E. The complete class diagram is
shown in figure 12.2.

Now that we have a new binder that can match on more than one type, we can turn
our attention to our new model binder for loading persistent objects. This new
model binder will be an implementation of the IFilteredModelBinder interface. It
will need to do a number of things in order to return the correct entity from our per-
sistence layer:

1 Retrieve the request value from the binding context
2 Deal with missing request values
3 Create the correct repository
4 Use the repository to load the entity, and return it

We won’t cover the third item in much depth, as this example assumes that an IoC
container is in place. The entire model binder needs to implement our IFiltered-
ModelBinder, and is shown in listing 12.7.

public class EntityModelBinder : IFilteredModelBinder
{
 public bool IsMatch(Type modelType)
 {
 return typeof(PersistentObject).IsAssignableFrom(modelType);
 }

 public object BindModel (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 ValueProviderResult value =
 bindingContext.ValueProvider [bindingContext.ModelName];

 if (value == null)

Listing 12.7 The EntityModelBinder

SmartBinder

DefaultModelBinder

Class

DefaultModelBinder
Class

IFilteredModelBinder

IModelBinder
Interface

Methods

IsMatch

IModelBinder
Interface

IModelBinder

_filteredModelBinders

Figure 12.2
The class diagram
of our SmartBinder
showing the relationship to
IFilteredModelBinder

B

C

D

 return null;

http://getfirebug.com/
http://getfirebug.com/
http://getfirebug.com/
http://www.microsoft.com/downloads/details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038
http://www.microsoft.com/downloads/details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038

277Controllers

 if (string.IsNullOrEmpty(value.AttemptedValue))
 return null;

 var entityId = new Guid(value.AttemptedValue);

 Type repositoryType = typeof(IRepository<>)
 .MakeGenericType(bindingContext.ModelType);
 var repository = (IRepository)IoC.Resolve(repositoryType);
 PersistentObject entity = repository.GetById(entityId);

 return entity;
 }
}

In listing 12.7 we implement our newly created interface, IFilteredModelBinder.
The additional method, IsMatch B, returns true when the model type being bound
by ASP.NET MVC is a PersistentObject, our base type for all model objects persisted
in a database. Next, we have to implement the BindModel method by following the
steps laid out just before listing 12.7. First, we retrieve the request value from the Mod-
elBindingContext C passed in to the BindModel method. The ModelBindingContext
contains a dictionary of strings to ValueProviderResults in the ValueProvider prop-
erty. If the ValueProviderResult does not exist, or the attempted value does not
exist, we won’t try to retrieve the entity from the repository D. Although the entity’s
identifier is a Guid, the attempted value is a string, so we construct a new Guid from
the attempted value on the ValueProviderResult E.

 Now that we have the parsed Guid from the request, we can create the appropriate
repository from our IoC container F. But because we have specific repositories for
each kind of entity, we don’t know the specific repository type at compile time. How-
ever, all of our repositories implement a common interface, as shown in listing 12.8.

public interface IRepository<TEntity>
 where TEntity : PersistentObject
{
 TEntity GetById(Guid id);
}

We want the IoC container to create the correct repository given the type of entity we
are attempting to bind. This means we need to figure out and construct the correct Type
object for the IRepository we create. We do this by using the Type.MakeGenericType
method to create a closed generic type from the open generic type IRepository<>.

Listing 12.8 The common repository interface

D

E

F

Open and closed generic types
An open generic type is simply a generic type that has no type parameters supplied.
IList<> and IDictionary<,> are both open generic types. To create instances of
a type, we must create a closed generic type from the open generic type. A closed
generic type is a generic type with type parameters supplied, such as IList<int>
and IDictionary<string, User>.

278 CHAPTER 12 Best practices

When we have the closed generic type for IRepository using the ModelBinding-
Context.ModelType property, we can use our IoC container to create an instance of
the repository to call and use. Finally, we call the repository’s GetById method and
return the retrieved entity from BindModel. Because we cannot call a generic method
at runtime without using reflection, we use another nongeneric IRepository inter-
face that returns only objects as PersistentObject, as shown in listing 12.9.

public interface IRepository
{
 PersistentObject GetById(Guid id);
}

All repositories in our system inherit from a common repository base class, which
implements both the generic and nongeneric implementations of IRepository.
Because some places cannot hold references to the generic interface (as we encoun-
tered with model binding) the additional nongeneric IRepository interface supports
these scenarios.

 We have our SmartBinder and EntityModelBinder, which bind to entities from
request values, but we still need to configure ASP.NET MVC to use these binders instead
of the default model binder. To do this, we set the ModelBinders.Binders.Default-
Binder property in our application startup code, as shown in listing 12.10.

protected void Application_Start()
{
 ModelBinders.Binders.DefaultBinder =
 new SmartBinder (new EntityModelBinder ());

At this point, we have only a single filtered model binder. In practice, we might have
specialized model binders for certain entities, classes of objects (such as enumera-
tion classes), and so on. By creating a model binder for entities, we can create con-
troller actions that take entities as parameters, as opposed to just a Guid, as shown in
listing 12.11.

public class ConferenceController : Controller
{
 public ViewResult Show(Conference c)
 {
 return View(c);
 }
}

With the EntityModelBinder in place, we avoid repeating code in our controller
actions. This repetition would obscure the intent of the controller action with data

Listing 12.9 The nongeneric repository interface

Listing 12.10 Replacing the default model binder

Listing 12.11 Controller action with an entity as a parameter
access code that is not relevant to what the controller action is trying to accomplish.

279Controllers

12.1.4 Hardcoded strings

ASP.NET MVC often uses dictionaries to pass information and data among different
layers. With all these dictionaries floating around, the possibility for hardcoded, dupli-
cated strings increases. Dictionaries are useful when we cannot specify an exact con-
tract for the data to pass between two objects. For example, the controller uses
ViewData to pass information to the view. But ViewData at its heart is nothing more
than an enhanced dictionary. If we hardcode our strings in the controller, such as in
the listing 12.12 example, we run the risk of brittle and unmaintainable code.

public ActionResult Register()
{
 ViewData ["PasswordLength"] = MembershipService.MinPasswordLength;

 return View();
}

In this case, the ViewData key, "PasswordLength", is used no less than six times in the
entire sample ASP.NET MVC project! If we ever decided to change this key to some-
thing else, we could attempt a global find and replace, but we still run the risk of
changing the wrong keys. Repeating this key could cause problems for future main-
tainers, who might not understand where the key is used. So you wind up with a key
value that is never changed, for fear of breaking the application.

 Instead, with some static fields and a little organization, we can make sure that this
key appears once as a string in our application, as shown in listing 12.13.

public static class Keys
{
 public static class ViewData
 {
 public static readonly string PasswordLength = "PasswordLength";
 }
}

When we want to use a certain dictionary key, we go to the one place in our application
where these keys are defined. The changed controller action is shown in listing 12.14.

public ActionResult Register_after()
{
 ViewData[Keys.ViewData.PasswordLength] =
 MembershipService.MinPasswordLength;

 return View();
}

In our view, we’ll use the same reference to ensure that we have the key value only

Listing 12.12 Hardcoded string in a controller

Listing 12.13 Organized view data keys

Listing 12.14 Using a single location for a dictionary key
once in our application. If we decide to rename the value of this key, or its reference,

280 CHAPTER 12 Best practices

we won’t break any existing controllers, views, or tests. Hardcoded strings work well,
until the values are repeated. Some developers go as far as changing their IDE font
color settings for strings to be bright and recognizable, as a visual cue to the developer
indicating use of hardcoded strings.

12.1.5 Separated view models

In many applications, the model we pass to the view is our domain model. A screen to
show conference information might need only a single Conference object to display
what it needs. In other cases, we might need more information than what is available
on our domain model. A search results screen might need paging information, the
number of results returned, and perhaps a list of matched terms. On an edit screen,
we may want to include validation on our objects. If users can enter quantities in their
shopping carts, how can we ensure they entered valid numbers?

 Let’s take a simple example: when editing a conference, we are required to enter
the maximum number of attendees. This would be represented on our domain model
as shown in listing 12.15.

public class Conference : PersistentObject
{
 public int MaxAttendees { get; set; }
}

When it comes to binding this to our edit view, we’ll have a slight problem. If we make
our Conference the same model as the one our edit view uses, what happens if a user
enters an invalid numerical value, or nothing at all? Model binding either won’t work,
or will only bind the default to our MaxAttendees property. In order to properly handle
all use cases, our MaxAttendees property can only be a string. This is a case of the view’s
concerns leaking into our domain model, a situation to be avoided if all possible.

 The other option is to create a separate view model type for our views from the
domain model. We’ll create a specialized class, just for that one view. We can shape
that type however we like, and allow the view to shape our view model however we
want. The advantage of a separated view model is that our views won’t influence the
domain model in any way. For less complex applications, this separation is not neces-
sary and overcomplicates the design. As complexity of the views increases, the design
of the views has more and more impact on our domain model, unless the view model
and domain model are separated.

 But the information from our domain still needs to get to the views, and to do this,
we can simply transform our domain model into the view model, as shown in listing 12.16.

public ActionResult Edit(Conference conference)
{
 var editModel = new EditConference

Listing 12.15 Conference model

Listing 12.16 Transforming the domain model to view model

281Controllers

 {
 Id = conference.Id,
 MaxAttendees = conference.MaxAttendees.ToString()
 };
 return View(editModel);
}

Our Edit action, which is used to edit a Conference, takes a Conference domain
object as a parameter (using the model binding techniques of the last section). Next,
we create an EditConference view model object from our Conference. In our Edit-
Conference type, MaxAttendees is a string, so we can properly handle malformed
input. Finally, we return a ViewResult with the EditConference object as our model
for that view. To handle the final form post for editing, our Edit POST action now
takes the EditConference as a parameter, as shown in listing 12.17.

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(EditConference conference)
{

One interesting side effect of crafting custom view models is that our views and con-
trollers start to become much more strongly typed. Instead of receiving a bag of form
variables, we have a single object to deal with. Instead of myriad dictionary key-value
pairs, we have properties on a real type. We do have to write code to process the Edit-
Conference object and map it to our Conference object, but this is something we
would need to do in any case. Using an OOM (object-object mapper) such as
AutoMapper can save you from writing the lion’s share of mapping code. By separat-
ing our EditConference type from the Conference type, we allow each to grow inde-
pendently, with the only coupling between the two being our mapping code. The view
can shape the EditConference model, and our domain can shape the Conference
model. In practice, we found that our domain model and view models start with a
similar shape, but start to diverge as our views became more and more complex. As we
introduced master pages, partials, AJAX, caching, and so on, a separated view model
allowed us to contain the complexity of our views, without affecting the design of our
domain model.

12.1.6 Validation

Because validation can take so many forms, it’s a tricky subject. For a single screen for
adding a conference, you might have to enforce several rules:

■ Maximum attendees must be a number.
■ Maximum attendees is required.
■ Maximum attendees cannot exceed what the building’s fire code allows.
■ A large conference cannot be cancelled without approval of a majority of the

organizers.

Listing 12.17 The edit action for posting conference updates

282 CHAPTER 12 Best practices

As we can see, there is no black-and-white distinction among different rules. We must
enforce the rule that the “maximum attendees” value entered by the user is a num-
ber, but what about it being a required field? That starts to bleed into business rules
validation. Validation and business rules include a wide spectrum, from invariants
such as type checking and required fields, all the way to complex workflow logic. Vali-
dation frameworks work well with the UI end of the spectrum, where we are validat-
ing user input for further business rule checking. This distinction is not altogether
concrete, especially when we want to tie business rule violations to specific user inter-
face elements.

 But validation frameworks help to consolidate and standardize user input valida-
tion, providing a common interface for executing and reporting validation errors.
There are many validation frameworks in .NET, from the Validation Application Block
from the Microsoft Patterns and Practices group, to Data Annotations, originating
from ASP.NET Dynamic Data, to open source offerings such as Castle Validators. Each
is configured through attributes.

 We can use the Castle Validators for data type and required field validation, as
shown in listing 12.18.

public class EditConference
{
 public Guid Id { get; set; }

 [ValidateNonEmpty]
 [ValidateInteger]
 public string MaxAttendees { get; set; }

Castle Validators won’t execute automatically as part of an ASP.NET MVC request,
unless we specifically code them to do so. But we don’t want to have to code this vali-
dation for every controller action that needs validation. Instead, we can modify our
custom model binder to do the validation. When our controller action processes the
bound model, it can examine ModelState to determine if any validation errors
occurred, and take appropriate action. To add our Castle Validator logic to model
binding, we’ll need to override the OnModelUpdated method, as shown in listing 12.19.

protected override void OnModelUpdated (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
{
 var runner = new ValidatorRunner (new CachedValidationRegistry());
 if (!runner.IsValid(bindingContext.Model))
 {
 var summary = runner.GetErrorSummary(bindingContext.Model);

 foreach (var invalidProperty in summary.InvalidProperties)
 {

Listing 12.18 Our EditConference model with validation attributes applied

Listing 12.19 The modified default model binder with Castle Validator

B
C

D

283Views

 foreach (var error in summary
 .GetErrorsForProperty(invalidProperty))
 {
 bindingContext.ModelState
 .AddModelError(invalidProperty, error);
 }
 }
 }
}

To run validation against our model, we’ll first need to create the ValidatorRunner B,
the class responsible for executing the validation logic. The IsValid method C takes
our model, and returns a boolean indicating whether or not validation was successful.
If not, we call the GetErrorSummary method D, looping through the invalid properties
and errors for each property, adding the individual error message to the ModelState
errors collection E. Castle Validators have their own structure for representing valida-
tion errors, which we have to translate into ASP.NET MVC’s mechanism for representing
model errors. In our Edit action that accepts the form post, we need only to inspect the
ModelState for any errors, and show the original edit view if validation failed, as shown
in listing 12.20.

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Edit(EditConference conference)
{
 if (!ModelState.IsValid)
 return View(conference);

In our view, we can use the normal HtmlHelper methods to display any validation errors
or summaries, as we are using the built-in ModelState for Castle Validator validation
messages. With our custom model binder, we were able to provide seamless integration
between a third-party validation framework and ASP.NET MVC. Our views have no
knowledge of any validation framework underneath, allowing us to mix and match val-
idation frameworks to our needs. In the next section, we’ll examine ways to ensure our
views are easy to deal with in complex and long-term maintenance scenarios.

12.2 Views
It is easy to underestimate the effort needed to create and maintain the HTML
markup and code in an MVC application. Although the view is responsible only for cre-
ating and displaying HTML, duplication exists just as much in views as it would in
other layers in our application. We’ll look at techniques for reducing duplication as
well as using lambda expressions and strongly typed views to eliminate magic strings.

12.2.1 Strongly typed views

Here is one view, one model. When a view accepts only one model type, it allows us to
make optimizations along that vector, such as the generic HtmlHelper and expression-

Listing 12.20 Handling validation errors in our controller action

E

based HTML generation. Strongly typed views are straightforward to use: when we use

284 CHAPTER 12 Best practices

the View method in an action method, we pass in the model object. On the view side,
we can inherit from the generic System.Web.Mvc.ViewPage<TModel base type. Moving
away from the dictionary-based view model to a strongly typed model with real proper-
ties eliminates many of the pesky runtime errors that crop up due to relying on a weak
contract of dictionary keys, which are not compile-safe. With dictionary keys, we have
to rely on the strength (and correctness) of our controller unit tests to ensure our
views don’t break. Strongly typed views also bring another developer convenience:
IntelliSense. When we access the Model property in a view, IntelliSense can pick up all
members from the underlying model type.

 Strongly typed views don’t force us away from the dictionary-based ViewData. Both
can exist in a single view, though these occurrences should be the exception, not the
rule. We’ll have to handle some scenarios slightly differently, such as filters used for
populating ViewData. With a strongly typed view, we want to limit the filters being
used in this manner. Instead, we can use the RenderAction method inside of a view to
grab common information that is not already in the existing view model. It may seem
strange to call another action inside of a view, but this provides a way for the template
of a page to organize other information that may need to appear on many pages.
When we use filters for populating ViewData, we are introducing a strong, but not
obvious, coupling from the view to the controller. When we look in a view and see
access to ViewData through a key-value pair, it is difficult to trace back and understand
where this value came from, and why. With strongly typed views and RenderAction, we
can enforce strongly typed views throughout our application, regardless of how we
organize our views into partials.

 Current ASP.NET MVC demos and examples rely heavily on dictionaries to pass data
around. Overreliance on these mechanisms can lead to a brittle application, and just
the introduction of compile-time safety in strongly typed views is a welcome safety net
for reducing bugs.

12.2.2 Fighting duplication

When using Web Forms, we had many different avenues for reducing duplication and
providing common visual components. Many of these same avenues exist for MVC;
some are new, and some are deprecated. There are at least four ways to consolidate
HTML in ASP.NET MVC:

1 Master pages
2 Partials
3 RenderAction
4 Extending HtmlHelper

In addition to these four, there are more exotic ways to render HTML in a view, such as
subcontrollers and partial requests. The most common mechanisms are the four
listed, and each has its sweet spot.

 For site-wide layout, master pages are the ideal choice. Using content placeholders,

we can create a common layout for our site, and individual pages can insert content for

285Views

each placeholder. Master pages can be nested, allowing us to construct general layouts,
as well as layouts for sections of a website. The administrative section might have the
same header and footer, but a different toolbar and main section layout, whereas the rest
of the site might have a preference-generated toolbar, with a sidebar for bookmarks.
With master pages, interaction with ViewData should be kept to a minimum, as inter-
actions would create a coupling from controller design to view design. Master page
design should not affect controller/action design.

 Every time you start to copy and paste HTML, stop yourself. This could be an
opportunity to refactor that common markup into a partial. Partials, which can them-
selves be strongly typed, are perfect for small, repeated bits of markup used in more
than one view. Partials have their own ViewData, which must be supplied by a parent
view, and therefore the calling action. If this information is already available in the sin-
gle view model given to the view through ViewData, partials are an appropriate mech-
anism for consolidating HTML. If you must resort to filters to supply a partial’s
ViewData, your controllers will start to become more and more intimate with the
design of your view.

 RenderAction is an excellent alternative to using the combination of a filter and a
partial, because it effectively displays markup and data that is completely orthogonal
to your main controller action. A logon widget displayed on every page needs login
information. But if your main controller action is displaying a list of products, it mud-
dies the concern of our controller to include the name of the current user. We can put
the name of the current user in ViewData through a filter, but our view is no longer
completely strongly typed. On the view side, we’ll see a call to RenderPartial and
passing in the user’s name. Using this method, you will likely not be able to under-
stand from where the information is coming. If you have to search for usages of a dic-
tionary key value, that is likely an indication of too much indirection. With
RenderAction, the view creates a minipipeline, calling an action with all of the
action’s filters executed. The choice of locating data for the subview is relegated to the
other controller.

 We have the choice of extending HtmlHelper. The choice between using a partial
and extending HtmlHelper is fairly clear. If the piece of HTML is only one or two ele-
ments, the HtmlHelper is an ideal choice. A common scenario for input elements is to
include a label alongside the form element. This repetitive HTML gets tedious to write
over and over. We can encapsulate this into a single HtmlHelper extension, as shown
in listing 12.21.

public static string TextBoxWithLabelFor<TModel, TProperty>(
 this HtmlHelper<TModel> htmlHelper,
 Expression<Func<TModel, TProperty>> expression,
 string label)
 where TModel : class
{
 string labelHtml =

Listing 12.21 Extending HtmlHelper to include labels

286 CHAPTER 12 Best practices

 string.Format("<label for=\"{0}\">{1}:</label>",
 ExpressionHelper.GetInputName(expression),
 label);
 string textboxHtml = htmlHelper.TextBoxFor(expression);

 return labelHtml + " " + textboxHtml;
}

In our extension, we craft custom HTML for the label B, but lean on helpers from
the MVC Futures assembly to assist in creating both the textbox and the value of the
label’s for attribute C. The markup then becomes much easier to read, as shown in
listing 12.22.

<% using (Html.BeginForm()) { %>
 <div>
 <%= Html.TextBoxWithLabelFor (c => c.MaxAttendees, "Max Attendees")
 %>
 <%= Html.ValidationMessageFor(c => c.MaxAttendees) %>
 <p>
 <input type="submit" value="Submit" />
 </p>
 </div>
<% } %>

The MVC Futures assembly contains quite a few extensions that are useful with
strongly typed views. We can combine and extend the provided extensions in new and
interesting ways. We could add support for validation error messages, asterisks for
required fields, or custom HTML for certain kinds of output. We could create exten-
sions for dates to include a calendar picker, or autocomplete functionality for user
pickers. Code looks bad in markup, and markup is hard to distinguish in code. If you
find yourself piecing together lots of HTML in an HtmlHelper extension, you may want
to look at partials. If your partial is small, or contains logic, an HtmlHelper can provide
a cleaner mechanism for the containing view.

 To fully take advantage of views in ASP.NET MVC, it helps to understand the differ-
ent ways we can refactor, extend, and improve how we craft HTML. Not all mecha-
nisms are appropriate in every scenario, and often, the choice between options is not
always clear. Views should never get so complicated that it is difficult to move from a
partial to an HtmlHelper extension or a RenderAction call to a filter and a partial. In
the next section, we’ll examine ways to reduce the number of magic strings present in
our application through use of expressions.

12.2.3 Embracing expressions

Magic strings permeate the ASP.NET MVC Framework. They are magic because they
represent a property or a well-known attribute, but there is no connection to the orig-
inal information. When using magic strings, you are prone to the following types of
errors: misspelling, refactoring, and renaming bugs. Even the default template

Listing 12.22 Using the HtmlHelper extension in a view

B
C

included in ASP.NET MVC is riddled with magic strings. Because C# is a statically typed

287Views

language, we can leverage the type and symbol checking if we use symbols instead of
strings to make relationships among code. As an exercise, let’s examine one view in
the sample, the LogOn.aspx page, in listing 12.23.

<h2>Log On</h2>
<p>
 Please enter your username and password.
 <%= Html.ActionLink ("Register", "Register") %>
 if you don't have an account.
</p>
<%= Html.ValidationSummary("Login was unsuccessful. Please correct the errors

and try again.") %>

<% using (Html.BeginForm()) { %>
 <div>
 <fieldset>
 <legend>Account Information</legend>
 <p>
 <label for="username">Username:</label>
 <%= Html.TextBox("username") %>
 <%= Html.ValidationMessage("username") %>
 </p>
 <p>
 <label for="password">Password:</label>
 <%= Html.Password("password") %>
 <%= Html.ValidationMessage("password") %>
 </p>
 <p>
 <%= Html.CheckBox("rememberMe") %>
 <label class="inline" for="rememberMe">Remember me?</label>
 </p>
 <p>
 <input type="submit" value="Log On" />
 </p>
 </fieldset>
 </div>
<% } %>

We can see several examples of magic strings:

■ The ActionLink call refers to a method on a controller B, and will break if the
method name changes.

■ All labels refer to a parameter name on a method C, which will break if the
name changes.

■ All input elements refer to a parameter name on a method D.
■ All validation messages refer to a parameter name on a method E.
■ Labels, input elements and validation messages must line up, or the page will

break.

Fighting these magic string errors is easy–don’t use them! Instead, we can use expres-

Listing 12.23 Magic strings in a view

B

C
D

E

sion-based methods and strongly typed views. Consider the action method that would

288 CHAPTER 12 Best practices

accept a form post from the page using the view in listing 12.23. One approach is for
the action method to accept each form field as an individual parameter. Another
approach would be to create a single view model type to represent the entire form, as
shown in listing 12.24.

public class LogOnForm
{
 public string Username { get; set; }
 public string Password { get; set; }
 public bool RememberMe { get; set; }
 public string ReturnUrl { get; set; }
}

Our view can then be changed to a strongly typed view for our LogOnForm. All HTML
generation can now use expressions pointing to a property instead of magic strings, as
shown in listing 12.25.

<h2>Log On</h2>
<p>
 Please enter your username and password.
 <%= Html.ActionLink<AccountController>(c => c.LogOn_after(null),
 "Register") %>
 if you don't have an account.
</p>
<%= Html.ValidationSummary("Login was unsuccessful. Please correct the errors

and try again.") %>

<% using (Html.BeginForm()) { %>
 <div>
 <fieldset>
 <legend>Account Information</legend>
 <p>
 <%= Html.TextBoxWithLabelFor(
 form => form.Username, "Username") %>
 </p>
 <p>
 <%= Html.PasswordWithLabelFor(
 form => form.Password, "Password") %>
 </p>
 <p>
 <%= Html.CheckBoxWithLabelFor(
 form => form.RememberMe, "Remember me") %>
 </p>
 <p>
 <input type="submit" value="Log On" />
 </p>
 </fieldset>
 </div>
<% } %>

Listing 12.24 Our new view model form type

Listing 12.25 Using expressions in our view

B

C

D

E

289Routes

We have introduced many changes in this view:

■ The ActionLink call now refers to a method on a controller B.
■ The username input element is generated from an expression C.
■ The password input element is generated from an expression D.
■ The “remember me” input element is generated from an expression E.

Despite all these changes, our final HTML has not changed. However, our view is now
much less susceptible to subtle bugs, which can only be caught at runtime. With
strongly typed views and expression-based HTML generation methods, we can feel
comfortable that refactoring will work properly and view compilation will fail if we
rename or remove a controller action or view model property. Not all instances of
magic string usage are eliminated in the MVC Futures assembly. Additional extensions
are easily added as necessary if they don’t already exist in the MvcContrib project. For
instance the MvcContrib.FluentHtml assembly can assist with HTML generation.

 Magic strings are insidious sources of runtime bugs, and should be eliminated
wherever you find them. Common usages of magic strings come in the form of repre-
senting method, property, or parameter names as strings in your application. These
should be red flags for developers, and replaced with compile-safe, IntelliSense, and
refactoring-friendly expressions. In the next section, we’ll examine more usages of
expressions for dealing with routes.

12.3 Routes
Routing is perhaps the biggest innovation of the ASP.NET MVC project—so big, in fact,
it was included in the .NET Framework 3.5 SP1 release, well ahead of the ASP.NET MVC
release. Like any new tool, routing is easy to abuse. Unless routes are tested thor-
oughly, changes to routes can break existing URLs. When URLs become public, chang-
ing them can break links, bookmarks, lower search rankings, and anger end users.
Designing of custom routes and URL patterns should come from actual business
requirements. In this section, we’ll examine some common sense practices for routes,
as well as some practices to ensure we don’t break our application in the process.

12.3.1 Testing routes

When we do need custom routes, we need to ensure both that the routes we are creating
are correct, and any existing routes are not modified. We can start off with the built-in
routes, and lock those down with tests. The default route is shown in listing 12.26.

routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

routes.MapRoute(
 "Default",
 "{controller}/{action}/{id}",
 new { controller = "Home", action = "Index", id = "" }

Listing 12.26 Default route in a new application
);

290 CHAPTER 12 Best practices

For many applications, this route is sufficient and does not necessarily need to be
tested on its own. If we added additional routing behavior, we would want to ensure
that existing routes that follow this format are not broken. Before we start writing
tests, we need to think of a few scenarios. The following URLs should work in the
default sample application:

■ /—maps to HomeController.Index()
■ /home—maps to HomeController.Index()
■ /home/about—maps to HomeController.About()

To make things more interesting, we’ll add a simple ProductController to list, view,
and search products, as shown in listing 12.27.

public class ProductController : Controller
{
 public ViewResult Index()
 {
 var products = new[]
 {
 new Product {Name = "DVD Player"},
 new Product {Name = "VCR"},
 new Product {Name = "Laserdisc Player"}
 };
 return View(products);
 }

 public ViewResult Show(int id)
 {
 return View(new Product {Name = "Hand towels"});
 }

 public ViewResult Search(string name)
 {
 return View("Show", new Product {Name = name});
 }
}

With our new controller, we want to support more interesting URL scenarios:

■ /product/show/5—maps to ProductController.Show
■ /product/SomeProductName—maps to ProductController.Search(Some-

ProductName)

Out of the box, the built-in routes support the first scenario, but not the second. Before
we start messing around with our routes, we need to add tests to our existing scenarios.
Testing routes is possible, but much easier with the testing extensions of the open source
project, MvcContrib. We’ll test the first scenario, as shown in listing 12.28.

[Test]

Listing 12.27 Simplified product controller

Listing 12.28 Testing a blank URL
public void Should_map_blank_url_to_home()

291Routes

{
 "~/".Route().ShouldMapTo<HomeController>(c => c.Index());
}

Using extension methods, first transforms a string into a Route object with the Route
extension method. Next, we use the ShouldMapTo extension method to assert that a
route maps to the Index method on HomeController. ShouldMapTo is a generic
method, taking an expression. It is similar to other expression-based methods such as
Html.ActionLink. The expression is used to perform strongly typed reflection, as
opposed to doing something like passing the controller and action name in as strings,
which will fail under refactoring scenarios. Unfortunately, this test does not pass yet,
as we have not called anything to set up our routes. We’ll accomplish this in a test
setup method to be executed before every test, as shown in listing 12.29.

[TestFixtureSetUp]
public void Setup()
{
 MvcApplication.RegisterRoutes(RouteTable.Routes);
}

With our setup in place, our test now passes. The next scenarios we want to test are the
other built-in scenarios, as shown in listing 12.30.

[Test]
public void Should_map_home_url_to_home_with_default_action()
{
 "~/home".Route().ShouldMapTo<HomeController>(c => c.Index());
}

[Test]
public void Should_map_home_about_url_to_home_matching_method_name()
{
 "~/home/about".Route().ShouldMapTo<HomeController>(c => c.About());
}

[Test]
public void

Should_map_product_show_with_id_to_product_controller_with_parameter()
{
 "~/product/show/5".Route().ShouldMapTo<ProductController>(
 c => c.Show(5));
}

With default scenarios added, we can now proceed with modifying our route to sup-
port the special case of a search term directly in the URL. Before we get there, let’s
make sure our routes don’t already support this scenario by adding a test to verify the
functionality. After all, if this test passes, our work is done! The new test is shown in
listing 12.31.

Listing 12.29 Registering the routes in a setup method

Listing 12.30 Testing the built-in routing scenarios

292 CHAPTER 12 Best practices

[Test]
public void Should_map_product_search_to_product_controller_with_parameter()
{
 "~/product/SomeProductName"
 .Route()
 .ShouldMapTo<ProductController>(c => c.Search("SomeProductName"));
}

Alas, our test fails, and our work is not yet done. The test fails with the message “Mvc-
Contrib.TestHelper.AssertionException : Expected Search but was SomeProduct-
Name.” To make our test pass, we need to add the appropriate changes to the routes,
as shown in listing 12.32.

routes.MapRoute(
 "SearchProduct",
 "product/{name}",
 new { controller = "Product", action = "Search" }
);

With this addition to our routes, our new test passes, along with all the other tests. We
were able to add a new route to our routing configuration with the assurance that we
would not break the other URLs. Since URLs are now generated through routes in an
MVC application, testing our routes becomes of utmost importance. The test helpers
in MvcContrib wrapped all the ugliness that usually comes along with testing routes.
In the next section, we’ll examine action names and custom routes.

12.3.2 Action naming

Although the default routes in an MVC application match a URL to a method name on
a controller, the defaults can be changed. As shown in section 12.3.1, we can map the
second URL segment to a parameter on a specific action. When using the MVC exten-
sion points of the ActionNameSelectorAttribute and ActionMethodSelectorAt-
tribute, the name of an action method on a controller does not exactly match the
method name. The two concepts of action name and action method name are completely
separate, and can be configured independently. We can configure an action method
as shown in listing 12.33 to modify the action name.

public class ChangedActionNameController : Controller
{
 [ActionName("Foo")]
 public ActionResult Index()
 {
 return View();
 }
}

Listing 12.31 New scenario routing product search terms

Listing 12.32 Additional route for searching products

Listing 12.33 Modifying the action name for an action method

293Routes

In the controller shown in listing 12.33, we specified that the action method name
should be different from the action name. The action name, (originally the action
method name, "Index"), is now "Foo". Navigating to /changedactionnname or
/changedactionname/index now results in a 404 Not Found error. The action name
is now "Foo", and we can only access this action through /changedactoinname/foo.
As view names correspond to action names, not action method names, our view is
named "Foo.aspx".

 But in most applications, we are better served adhering to the convention that
action names match action method names. If method names differ from action
names, we can no longer use expression-based URL generators. Our URL generation is
now susceptible to subtle refactoring and renaming errors. This can be alleviated by
introducing global constants for action names, but it still creates a string-based system,
with another level of indirection between action methods and action names, that is
not needed in many cases.

 Consistency in action naming can reduce the complexity in your system. If your
system is generally resource-based; that is, controllers are designed around individual
entities (a ProductController and a UserController), RESTful-style action names
introduce both discoverability on the client side, and predictable design on the devel-
oper side. Given a controller designed for products, the user interactions we might
want to support include

■ Listing products
■ Showing one product
■ Creating a new product
■ Editing an existing product
■ Deleting a product

Translated into controller actions, these would map to

■ Index
■ Show
■ New
■ Edit
■ Delete

Because MVC action methods can be configured to accept only certain HTTP verbs, such
as POST, we can design our controller with a set of overloaded action methods, one for
viewing a form and one for receiving the posted form. If we had some sort of Widget
resource in our system, our WidgetsController would look similar to listing 12.34.

public class WidgetsController : Controller
{
 public ActionResult Index()

Listing 12.34 A RESTful-style controller for managing Widget resources
 {

294 CHAPTER 12 Best practices

 return View();
 }

 public ActionResult Show(int id)
 {
 return View();
 }

 public ActionResult New()
 {
 return View();
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult New(WidgetForm widget)
 {
 return RedirectToAction("Index");
 }

 public ActionResult Edit(int id)
 {
 return View();
 }

 [AcceptVerbs(HttpVerbs.Post)]
 public ActionResult Edit(WidgetForm widget)
 {
 return RedirectToAction("Index");
 }
}

Actions that support GET and POST verbs, the New and Edit actions, can be over-
loaded so that one method responds to GET requests B and the other responds to
POST requests C. To be clear, these actions don’t match the definition of REST. How-
ever, the design would be simpler if all of the controllers dealing with a resource
looked the same. If we went to a real RESTful architecture, using MvcContrib’s Sim-
plyRestfulRouteHandler, we could support all of the standard REST actions and cor-
responding HTTP verbs. Regardless of whether we want to adopt REST, having every
action that shows a single entity or resource called Show makes new features easier to
learn and makes the application easier to maintain.

12.4 Testing
The separation of concerns that the MVC pattern provides significantly increases test-
ability for .NET web applications. Because controllers are normal classes, and actions
are merely methods, we can load and execute actions and then examine the results.
Even though testing controllers is simple, we must consider an important caveat.
When we test a controller action, we are only able to write assertions for the behavior
we can observe. The true test of a working application is running it in a browser, and
there are significant differences between viewing a page in a browser and asserting
results in a controller action test. We can assert that the correct view is chosen, but we
cannot assert that the correct view is shown at runtime. We can assert that we put cor-

B

C

rect information into ViewData, but we cannot ensure that the view uses all of the

295Testing

information we give it. We also cannot assert that all possible controller code paths
place the necessary objects into ViewData. With action filters, it is quite possible that
a view will need data that is not present. Controller action tests don’t run the entire
MVC engine, so things like ActionFilters are not executed. Although action unit tests
add value, they don’t replace end-to-end application-level testing. Before we examine
the last mile of testing in UI tests, let’s see how we can lock down the behavior in the
rest of our MVC application through unit testing.

12.4.1 Controller unit tests

For controllers to be maintainable, they should be as light and skinny as possible, del-
egating all real domain work to other services. Our controller tests will reflect this
choice, as assertions will be small and target only the following:

■ What ActionResult was chosen
■ What information was passed to the view, in ViewData or TempData

All other web-related information, whether it is security, cookies, or session variables,
should be encapsulated in a domain-specific and domain-relevant interface. Although
it eases testing, encapsulation and separation of concerns are the most significant rea-
sons to leave these other HttpContext-related items out of controllers. The simplest
example of a controller action is one that simply passes data into a view, as shown in
listing 12.35.

public ViewResult Index()
{
 var products = _productRepository.FindAll();

 return View(products);
}

In this example, productRepository is a private field of type IProductRepository, as
shown in listing 12.36.

public class ProductsController : Controller
{
 private readonly IProductRepository _productRepository;

 public ProductsController(IProductRepository productRepository)
 {
 _productRepository = productRepository;
 }

When we test the ProductsController, we don’t need to supply the actual implemen-
tation of the IProductRepository interface. For the purposes of a unit test, we are
testing only the ProductsController and no external dependency used. To maximize
the localization of defects, our unit tests should test only a single class. We don’t want

Listing 12.35 A simple action

Listing 12.36 The controller with its dependency
a controller unit test to fail because we have a problem with our local database. In a

296 CHAPTER 12 Best practices

unit test, we’ll have to pass a test double into the ProductsController repository. A
test double is a stand-in for an actual implementation, but one that we can manipulate
to force our class under test to execute specific code paths. Our controller unit test
will need to set up the stubbed IProductRepository with dummy data, and then
assert that the right action result is used, the right view is chosen, and the right data is
passed to the view, as shown in listing 12.37.

[Test]
public void Index_should_use_default_view_and_repository_data()
{
 var products = new[]
 {
 new Product {Name = "Keyboard"},
 new Product {Name = "Mouse"}
 };

 var repository = Stub<IProductRepository>();
 repository.Stub(rep => rep.FindAll()).Return(products);

 var productsController = new ProductsController(repository);

 ViewResult result = productsController.Index();

 result.ViewName.ShouldEqual(string.Empty);
 result.ViewData.Model.ShouldEqual(products);
}

We set up product data for our test B. The values inside don’t matter for the purposes
of our unit test, but aid in debugging if our test fails for an unknown reason. We cre-
ate a stub of our IProductRepository by calling a method on our base test class C.
This method is a wrapper around Rhino Mocks, a popular test double creation and
configuration framework. After we create a test double of our IProductRepository,
we stub out the call to FindAll to return our array of Products we created earlier D.
With the stubbed IProductRepository, we create a ProductsController E.

 With all of the classes and test doubles set up for our unit test, we can execute our
controller action and capture the resulting ViewResult object F. We assert that the
ViewName should be an empty string G (signifying we use the Index view), and that
the model passed to the view is our original array of products H. Our test passes with
the implementation of our action shown in listing 12.35.

 A two-line action method is tested easily, but is not very interesting. In a more
interesting scenario, we edit a model, then post it to a form. We expect several things
to happen:

■ Check the model state for errors
■ If errors exist, show the original view
■ If not, save the model and redirect back to the index

Let’s start with the error path, where a user entered incorrect information. We’ll assume

Listing 12.37 Testing our Index action

B

C
D

E

F

G
H

that model state errors are populated through other means as a result of validation,

297Testing

perhaps through a model binder or action filter. For the purposes of our test, shown in
listing 12.38, the means of validation is not important, but rather, how the controller
behaves under this condition.

[Test]
public void Edit_should_redirect_back_when_model_errors_present()
{
 var badProduct = new Product { Name = "Bad value" };

 var repository = Stub<IProductRepository>();

 var productsController = new ProductsController(repository);
 productsController
 .ModelState.AddModelError("Name", "Name already exists");

 var result = productsController.Edit(badProduct);

 result.AssertViewRendered().ViewName.ShouldEqual(string.Empty);
 repository.AssertWasNotCalled(rep => rep.Save(badProduct));
}

To force our controller into an invalid model state, we need to add a model error to
ModelState with the AddModelError method B. After setting up our controller, we
invoke the Edit action C, and examine the result returned. We assert that a view is
rendered with the AssertViewRendered method D, which returns a ViewResult
object. The ViewName on the ViewResult should be an empty string, signifying the
Edit view is rerendered. Finally, we assert that the Save method on our repository
was not called E. This negative assertion ensures we don’t try to save our Product
if it has validation problems. Normally, we would create a separate presentation
model specifically for the form, but in this example, we use our domain model
directly. We tested the error condition, and now we need to test our controller in the
positive condition that our model didn’t have any validation problems, as shown in
listing 12.39.

[Test]
public void Edit_should_save_and_redirect_when_no_model_errors_present()
{
 var goodProduct = new Product { Name = "Good value" };

 var repository = Stub<IProductRepository>();

 var productsController = new ProductsController(repository);

 var result = productsController.Edit(goodProduct);

 result
 .AssertActionRedirect()
 .ToAction<ProductsController>(c => c.Index());

 repository.AssertWasCalled(rep => rep.Save(goodProduct));
}

Listing 12.38 Testing the edit action when errors are present

Listing 12.39 Testing our controller action when no errors are present

B

C

D
E

B

C
D

298 CHAPTER 12 Best practices

In this test, we set up our dummy product and controller in a manner similar to the
last test, except this time we don’t add any model errors to our ModelState. We invoke
the Edit action with the product we created B, and then verify values on the result.
We use the MvcContrib project’s AssertActionRedirect C to assert that the result of
our action redirects to another action, specifically to the Index action. The ToAction
method allows us to assert that we redirect to a specific action using a strongly typed
expression D. Because we use expressions here, our test won’t break if we rename the
Index action method name. To make both of these tests pass, our action looks like list-
ing 12.40.

[AcceptPost]
public ActionResult Edit(Product product)
{
 if (!ModelState.IsValid)
 {
 return View(product);
 }
 _productRepository.Save(product);

 return this.RedirectToAction(c => c.Index());
}

In our Edit action, we check for any ModelState errors with the IsValid property B,
and return a ViewResult with our original Product C. Our Edit view likely will use
styling to highlight individual model errors and display a validation error summary. If
there are no validation errors, we save the Product and redirect back to the Index
action D. With our controller’s behavior locked down sufficiently, we can feel confi-
dent we can modify our Edit action in the future and know if our change breaks exist-
ing functionality. In the next section, we’ll examine strategies for testing custom
model binders.

12.4.2 Model binder unit tests

Custom model binders eliminate much of the boring plumbing that often clutters
action methods with code not pertinent to the true purpose of the action method. But
with this powerful tool comes the need for thorough testing. Our infrastructure needs
to be rock solid, as it can execute on a large majority of requests. Testing model binders
is not as straightforward as testing action methods, but it is possible. The amount of test-
ing needed varies depending on what you are doing with your custom model binder.
Simply implementing the IModelBinder interface likely means you’ll only need to
worry about one single BindModel method and only a ModelBindingContext during
testing. Inheriting from DefaultModelBinder is a bit more challenging, as any code we
add will execute alongside other code that we don’t own. We must ensure that any
behavior we add works correctly in the context of the other responsibilities of the base
DefaultModelBinder class. The DefaultModelBinder class design has extensibility in

Listing 12.40 Implementation of the Edit action

B

C

D

299Testing

mind, and key extension points are available through specific method overrides, but we
still need to test these methods in the context of an entire binding operation (such as
a single BindModel call).

 In section 12.1.3, we examined creating a custom model that bound entities from a
repository, as shown in listing 12.41.

public object BindModel (
 ControllerContext controllerContext,
 ModelBindingContext bindingContext)
{
 ValueProviderResult value =
 bindingContext.ValueProvider [bindingContext.ModelName];

 if (value == null)
 return null;

 if (string.IsNullOrEmpty(value.AttemptedValue))
 return null;

 var entityId = new Guid(value.AttemptedValue);

 Type repositoryType = typeof(IRepository<>)
 .MakeGenericType(bindingContext.ModelType);
 var repository = (IRepository)IoC.Resolve(repositoryType);

 PersistentObject entity = repository.GetById(entityId);

 return entity;
}

We didn’t add any tests in our original example, so let’s add some now. We have sev-
eral guard clauses protecting against bad input. However, we didn’t include the check
for a user or part of our application puting an invalid GUID into the querystring (or
form variable). Rather than allow an exception to be thrown during binding, we
would like to handle this by returning null, as shown in the test in listing 12.42.

[Test]
public void Should_resolve_bind_to_null_when_guid_not_in_correct_format()
{
 var valueProviderDictionary = new ValueProviderDictionary(null)
 {
 {
 "ProductId",
 new ValueProviderResult ("NotAGuid", "NotAGuid", null)
 }
 };

 var bindingContext = new ModelBindingContext
 {
 ModelName = "ProductId",
 ValueProvider = valueProviderDictionary

Listing 12.41 Entity model binder implementation

Listing 12.42 Test for bad GUID values

B

C

300 CHAPTER 12 Best practices

 };

 var binder = new EntityModelBinder ();
 object model = binder.BindModel (null, bindingContext);

 model.ShouldBeNull();
}

Our model binder uses only a ModelBindingContext, not the ControllerContext. We
need only focus on creating a ModelBindingContext representative of an invalid GUID
value. First, we create a ValueProviderDictionary, with a single entry for a ProductId
parameter B. For the raw and attempted values in the ValueProviderResult, we’ll
substitute bad GUID values, to force our model binder to throw an exception. With our
ValueProviderDictionary assembled, we can create our ModelBindingContext C,
using the same ModelName as was used in our ValueProviderDictionary. Because we
use the ModelName directly to look up ValueProviderResults in our model binder, any
mismatch will cause our custom model binder to not execute the code we are inter-
ested in. When we execute this unit test, it fails with a System.FormatException,
because our model binder is not yet able to handle invalid GUIDs. To make our test
pass, we can either parse the input string using regular expressions, or use a
try…catch block. For simplicity, we’ll use the exception handling method, with the
additions shown in listing 12.43.

Guid entityId;

try
{
 entityId = new Guid(value.AttemptedValue);
}
catch (FormatException)
{
 return null;
}

With these changes, our test now passes. We surrounded our original GUID construc-
tor with a try..catch block for the specific FormatException type thrown when the
parsed value is not of the right format B. There are other interesting scenarios we
could add tests for, but all of them employ the same technique of creating a Model-
BindingContext representative of a certain model-binding scenario. Unit tests for
model binders go quite a long way to proving the design of a model binder, but still
don’t guarantee a working application.

 Model binders are one cog in a larger machine, and only through testing that larger
part can we have complete confidence in our model binders. It can often take quite a
bit of trial and error to get the model binder to function correctly. When it is working
correctly, we need only to construct the context objects used by our model binder in our
unit test to recreate those scenarios. Unfortunately, merely looking at a model binder
may not show you how to construct the context objects it uses. A common test failure

Listing 12.43 Modifying the GUID parsing code to handle invalid values

B

301Testing

is a NullReferenceException, where a call to an MVC framework method requires
other supporting objects in place. The easiest way to determine what pieces your model
binder needs in place is to simply write a test and see if it passes. If it does not pass
because of an exception, keep fixing the exceptions, often by supplying test doubles,
until your test passes or fails due to an assertion failure. In the next section, we’ll exam-
ine testing action filters.

12.4.3 Action filter unit tests

The story for testing action filters is very similar to that for testing model binders. Unit
testing is possible, and its difficulty is directly proportional to how much the filter
relies on the context objects. Generally, the deeper the filter digs in to the context
object, the more we’ll need to be set up or mocked in a unit test. Table 12.1 illustrates
the types of filters and the context objects used for each.

Each context object has its own difficulties for testing, as each has its own dependen-
cies for usage. All context objects have a no-argument constructor, and a unit test may
be able to use the context object as is without needing to supply it with additional
objects. Although your filter may use only one piece of the context object, you may
find yourself needing to supply mock instances of more pieces, as many of the base
context object constructors have null argument checking. You may find yourself far
down a long path that leads to supplying the correct dependencies for a context
object, and these dependencies may be several levels deep. Let’s add tests to the filter
shown in listing 12.44.

public class CurrentUserFilter : IActionFilter
{
 private readonly IUserSession _session;

 public CurrentUserFilter (IUserSession session)
 {
 _session = session;

Table 12.1 Filters and their supporting context objects

Filter type Method Context object

IActionFilter OnActionExecuted ActionExecutedContext

OnActionExecuting ActionExecutingContext

IAuthorizationFilter OnAuthorization AuthorizationContext

IExceptionFilter OnException ExceptionContext

IResultFilter OnResultExecuted ResultExecutedContext

OnResultExecuting ResultExecutingContext

Listing 12.44 Simple action filter
 }

302 CHAPTER 12 Best practices

 public void OnActionExecuting(ActionExecutingContext filterContext)
 {
 ControllerBase controller = filterContext.Controller;
 User user = _session.GetCurrentUser();
 if (user != null)
 {
 controller.ViewData.Add(user);
 }
 }

 public void OnActionExecuted(ActionExecutedContext filterContext)
 {
 }
}

In this filter, we have the requirement that a User object is needed for a component in
the view, likely for displaying the current user in a widget. Our CurrentUserFilter
depends on an IUserSession, whose implementation contains the logic for storing
and retrieving the current logged in user from the session. Our filter retrieves the cur-
rent user and places it into the controller’s ViewData. The controller is supplied
through the ActionExecutingContext object. If possible, during unit testing, we pre-
fer to use the no-argument constructor and supply any additional pieces by merely set-
ting the properties on the context object. The ActionExecutingContext type has
setters for the Controller property, so we’ll be able to use the no-argument construc-
tor and not worry about the larger, parameter-full constructor. Our complete unit test,
shown in listing 12.45, is able to create a stub implementation for only the parts used
in our filter.

[TestFixture]
public class CurrentUserFilterTester : TestClassBase
{
 [Test]
 public void Should_pass_current_user_when_user_is_logged_in ()
 {
 var loggedInUser = new User();

 var userSession = Stub<IUserSession>();
 userSession.Stub(session => session.GetCurrentUser())
 .Return(loggedInUser);

 var filterContext = new ActionExecutingContext
 {
 Controller = Stub<ControllerBase>()
 };

 var currentUserFilter = new CurrentUserFilter (userSession);
 currentUserFilter.OnActionExecuting(filterContext);

 filterContext.Controller.ViewData
 .Get<User>().ShouldEqual(loggedInUser);
 }

Listing 12.45 Action filter unit test

B
C

D

E

F

G

}

303Testing

Our CurrentUserFilter depends on an implementation of an IUserSession inter-
face B, which we supply using the Stub method. The Stub method comes from the
TestClassBase class, and is a wrapper around Rhino Mocks’ CreateStub method.
Next, we stub the GetCurrentUser method on our stub IUserSession to return the
User object created earlier C. Because the actual implementation of IUserSession
requires the full HttpContext to be up and running, by supplying a fake implementa-
tion, we get much finer control over the inputs to our filter object.

 Next, we create our ActionExecutingContext D, but call only the no-argument
constructor. The controller can be any controller instance, and we again use Rhino
Mocks to create a stub implementation of ControllerBase E. Rhino Mocks creates a
subclass of ControllerBase at runtime, which saves us from using an existing or
dummy controller class. In any case, the ControllerBase provides ViewData, so we
don’t need to provide any stub implementation for that property. With our assembled
ActionExecutingContext and stubbed implementation of IUserSession, we can cre-
ate and exercise our CurrentUserFilter F. The OnExecutingMethod does not return
a value, so we need to examine only the ActionExecutingContext passed in. We assert
that the controller’s ViewData contains the same logged-in user created earlier G,
and our test passes!

 Getting to this point required trial and error to understand what the context
object requires for execution. Because filters are integrated and specific to the MVC
framework, it can be fruitless to try to write filters test-first, as only the fact that the
complete website is up and running proves the filter is working properly. We sup-
plied dummy implementations of the context objects, but constructed them in a way
that the MVC framework will likely not use. In the next section, we’ll examine how to
automate tests with the entire website up and running through automated UI tests.

12.4.4 Testing the last mile with UI tests

In this chapter thus far, we examined testing individual components of ASP.NET
MVC, including routes, controllers, filters, and model binders. Although unit testing
each component in isolation is important, the final test of a working application is
interaction with a browser against a live instance. With all of the components that
make up a single request, whose interaction and dependencies can become
complex, it is only through browser testing that we can ensure our application works
as desired from end to end. While developing an application, we often launch
a browser to manually check that our changes are correct and produce the intend-
ed behavior.

 In many organizations, manual testing is formalized into a regression testing script
to be executed by development or QA personnel before a launch. Manual testing is
slow and quite limited, as it can take minutes to execute a single test. In a large appli-
cation, regression testing is minimal at best and woefully inadequate in most situa-
tions. Fortunately, many free automated UI testing tools exist. Some of the more
popular tools are listed here:

304 CHAPTER 12 Best practices

■ WatiN (http://watin.sourceforge.net/)
■ Watir (http://wtr.rubyforge.org/)
■ Selenium (http://seleniumhq.org/)
■ QUnit (http://docs.jquery.com/QUnit)—for testing JavaScript

In addition to these open source projects, many commercial products on the market
provide additional functionality or integration with bug reporting systems or work item
tracking systems, such as Microsoft’s Team Foundation Server. However, the tools are
not tied to any testing framework, so integration with an existing project is rather trivial.

 In this section, we’ll examine UI testing with WatiN, which provides easy integra-
tion with unit testing frameworks. WatiN, an acronym of web application testing in .NET,
is a .NET library that provides an interactive browser API to both interact with the
browser, by clicking links and buttons for example, as well as find elements in
the DOM.

 Testing with WatiN usually involves interacting with the application to submit a form,
then checking the results in a view screen. Because WatiN is not tied to any specific unit
testing framework, we can use any unit testing framework we like. The testing automa-
tion platform Gallio (http://www.gallio.org/) provides important additions that make
automating UI tests easier:

■ Test steps for logging individual interactions in a single test
■ Running tests in parallel
■ Ability to embed screenshots in the test report (for failures)

To get started, we need to download and install Gallio. Gallio includes an external test
runner (Icarus), as well as integration with many unit testing runners, including Test-
Driven.NET, ReSharper, and others. Also included in Gallio is MbUnit, a unit testing
framework which we’ll use to author our tests. With Gallio downloaded and installed,
we need to create a Class Library project and add references to both Gallio.dll and
MbUnit.dll. Next, we need to download WatiN and add a reference in our test project
to the WatiN.Core.dll assembly. With our project references done, we are ready to cre-
ate a simple test. One of the most basic, but useful scenarios in our application is to
test to see if we can log in to our application. Testing manually, this would mean

1 Navigating to the login URL

2 Entering username and password
3 Clicking the Log in button
4 Checking that the login widget at the top of the screen has the correct name

Because we’ll want common functionality and configuration in all of our test classes
that use WatiN, we’ll create a base test class, as shown in listing 12.46.

[TestFixture]
[ApartmentState (ApartmentState.STA)]

Listing 12.46 Web test base class

http://watin.sourceforge.net/
http://wtr.rubyforge.org/
http://seleniumhq.org/
http://docs.jquery.com/QUnit
http://www.gallio.org/

305Testing

public class WebTestBase
{
}

The first attribute on our WebTestBase class should be familiar; it is the MbUnit attri-
bute for tagging a class as a TestFixture. The next attribute is not as well known.
Because WatiN uses COM to communicate with Internet Explorer (IE), and the COM
IE wrapper is not thread-safe, we must configure our unit test runner to use a single-
threaded apartment (STA). Each unit test runner is configured differently and in
MbUnit’s case, we use the ApartmentStateAttribute with and ApartmentState value
of ApartmentState.STA. With this attribute applied to our WebTestBase class, we need
to configure this setting only once in our test project, as long as all of our tests use
WebTestBase as a base class.

 Next, we can create a new test that performs the steps listed earlier in this section,
as shown in listing 12.47.

public class LoginScreen : WebTestBase
{
 [Test]
 public void Can_log_in_successfully()
 {
 using (var ie = new IE ("http://localhost:8082/Login"))
 {
 ie.TextField (Find.ByName ("Username")).TypeText("admin");
 ie.TextField (Find.ByName ("Password")).TypeText("password");

 ie.Button(Find.ByName ("login")).Click();

 Assert.IsTrue(ie.ContainsText ("Joe User"));
 }
 }
}

Our LoginScreen class inherits from the WebTestBase class created earlier. In the
LoginScreen test class, we define one test, “Can_log_in_successfully.” Inside this test,
we first create a new instance of the WatiN IE object B. The IE class has a constructor
that takes a URL as a parameter, which causes the IE browser to immediately launch at
the specified URL. We hardcoded the correct starting URL so that the IE browser
immediately navigates to the login screen. If the starting URL needs to be configured,
we could pull this information from a configuration file. The lifetime of the IE object
is wrapped in a using statement block, to ensure that our COM resources are disposed
of properly.

 The IE object is our primary source of interaction with the browser. It includes a
variety of methods to locate elements in the DOM, as well as methods to interact with
the browser’s periphery, such as cookies, dialog boxes, and so on. Our interaction will
deal mainly with locating and manipulating DOM elements, but other browser interac-
tion is available if needed. Back in our test, the next two lines use the TextField

Listing 12.47 Testing the login screen

B

C

306 CHAPTER 12 Best practices

method C to locate the HTML INPUT elements of type TEXT. The TextField method
takes a variety of arguments, each enabling a different way to search for elements.
With ASP.NET MVC, we can use the Constraint overload, and use the Find static class
to build a Constraint object to match the element we need. Other options include a
string for an element ID, a regular expression, or a custom callback function. For our
purposes, we’ll stick mainly with the Find.ByName constraint. With ASP.NET Web
Forms, it was more common to use regular expressions, as element ID and names were
not entirely deterministic. The MVC framework gives us complete control over ele-
ment IDs and names.

 The TextField method returns a single TextField object. We use the TypeText
method to fill in text into both the username and password fields. In this test, we
didn’t set up any login information beforehand, and we know that this login informa-
tion will work for a clean build of CodeCampServer. Typically, we’ll set up all entities
needed for a test in a setup method. After filling in the username and password, we
use the Button method in combination with the Find.ByName constraint to locate the
login button and click it with the Click method. If our login is correct, we’ll be redi-
rected in the browser to the home page, and our user’s name will appear at the top.
To verify this, we use the ContainsText with our user’s name and assert that our user’s
name is found.

 With our basic test in place, we can execute this test in the Gallio Icarus test run-
ner, shown in figure 12.3.
Figure 12.3 Simple passing login screen test

307Testing

In our test, we referenced all of the input elements by name, but how did we know
what name to look for? In older browsers, this meant viewing the HTML source. In
modern browsers, including IE8 and Chrome, a built-in HTML inspector picks HTML
elements by clicking them to bring the specific HTML element into a readable inter-
face. Google’s Chrome HTML inspector, shown in figure 12.4, allows us to click an ele-
ment on the browser to determine relevant information, such as element names.

Other browsers have extensions for this purpose, including Firebug (http://getfire-
bug.com/) for Firefox, and the IE Web Developer Toolbar (http://www.micro-
soft.com/downloads/details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038)
for versions previous to IE8. With these tools, we need only to click elements on a live
browser and inspect their element names or IDs for our UI tests. In figure 12.4, we
have the login button from our login screen selected, leaving guesswork or hunting
through our project behind.

 But what if our test fails? One of the features of MbUnit is the ability to embed
images into test reports, and one of the features of WatiN is to capture images. First,
we’ll create a failing test in as shown in listing 12.48.

[Test]

Listing 12.48 Intentional test failure

Figure 12.4 Google Chrome HTML inspector with our login button highlighted
public void Intentional_failure()

http://getfirebug.com/
http://getfirebug.com/
http://www.microsoft.com/downloads/details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038
http://www.microsoft.com/downloads/details.aspx?familyid=E59C3964-672D-4511-BB3E-2D5E1DB91038

308 CHAPTER 12 Best practices

{
 using (var ie = new IE ("http://localhost:8082/Login"))
 {
 ie.TextField (Find.ByName ("Username")).TypeText("admin");
 ie.TextField (Find.ByName ("Password")).TypeText("password");

 ie.Button(Find.ByName ("login")).Click();

 Assert.IsTrue(ie.ContainsText ("Joe Schmoe"));
 }
}

For this intentionally failing test, we change the text of the name asserted to an incor-
rect name, “Joe Schmoe.” Running this test proves our failure, but we would like to
capture the screenshot as part of the failure. Because we created the WebTestBase
class earlier, we can centralize all failure behavior in one place. We can create a tear-
down method, run after every test, and check to see if there were any failures in our
test. If so, we take a screenshot using WatiN and embed the image into Gallio’s test
results. To accomplish all of this, we’ll need to make more modifications to our Web-
TestBase class, as taking a screenshot requires the original instance of the IE object.
Because our original test had the IE object in a using block, it won’t be available to
our teardown method without modifications to our test. Instead of instantiating our
IE object in each test, we’ll do so in our WebTestBase in a SetUp method, as shown in
listing 12.49.

protected IE Browser { get; private set; }

[SetUp]
public void SetUp()
{
 Browser = new IE ("http://localhost:8082/Login");
}

Before each test executes, we create an IE instance and assign it to our protected
Browser property. Our original failing test now needs to use the Browser property
instead of creating the IE object itself, as shown in listing 12.50.

[Test]
public void Intentional_failure()
{
 Browser.TextField (Find.ByName ("Username")).TypeText("admin");
 Browser.TextField (Find.ByName ("Password")).TypeText("password");

 Browser.Button(Find.ByName ("login")).Click();

 Assert.IsTrue(Browser.ContainsText ("Joe Schmoe"));
}

With our IE object now managed by our base test class, we can introduce a TearDown
method to check for test failures and capture screenshots. Even if we didn’t include

Listing 12.49 Modified WebTestBase setting up the IE object

Listing 12.50 Modifying the failing test to use the Browser property

309Testing

the screenshot concept, we still need to add code in a teardown method to dispose of
our IE instance properly. Our TearDown method is shown in listing 12.51.

[TearDown]
public void TearDown()
{
 try
 {
 if (TestContext.CurrentContext
 .Outcome.Status == TestStatus.Failed)
 {
 var writer = TestLog.Writer.Default;
 using (writer.BeginSection("Test failed on this page"))
 {
 writer.Write("Url: ");
 using (writer.BeginMarker(Marker.Link(Browser.Url)))
 {
 writer.WriteLine(Browser.Url);
 }
 var imageCapturer = new CaptureWebPage (Browser);
 var image = imageCapturer
 .CaptureWebPageImage(false, false, 100);
 writer.EmbedImage("Failure.png", image);
 }
 }
 }
 finally
 {
 Browser.Close();
 Browser = null;
 }
}

In a try-finally block, we separate the image capturing and logging from managing
the IE instance. The IE browser should always be discarded at teardown, regardless of
whether an exception happens during image capturing H. The try-finally block
ensures our IE instance is disposed of properly. Inside the try block, we first check
Gallio’s test status in the TestContext object B. We only want to capture screenshots
in the event of a failing test. Next, we create a reference to the default log writer for
Gallio C. Gallio supports multiple nested log streams for complex test reports, but in
our case, the default will suffice.

 To create sections in our log output, we use the BeginSection method D. We
might have more sections logged detailing the steps executed in our test, so a separate
section for the error helps distinguish it in the final report. We also write the original
URL of the screen with the error for informational purposes. Using the Marker.Link
method E generates a clickable link in the final report, helpful to quickly traverse to
the failing screen. We are ready to capture the image.

 We create a CaptureWebPage object F, passing in the IE instance stored in our

Listing 12.51 Teardown method with image capturing and logging

B

C
D

E

F
G

H

test class. Next, we create an Image object and capture a screenshot using the

310 CHAPTER 12 Best practices

CaptureWebPageImage method. We use the EmbedImage method G on our log writer
object, providing the image object and a file name. Running this test in our Icarus
test runner gives us a nice screenshot of our failure, as shown in figure 12.5.

 Gallio is a powerful tool for creating UI tests when combined with WatiN. We can
create a wrapper over the WatiN browser calls, which can be difficult to read, as well as
more fluent calls that take advantage of strongly typed views, expressions, and Gallio’s
test steps. With test steps and a simple wrapper, we can log all interaction with IE as a
sort of test script, so that we can easily read exactly what our test performed, and
exactly where it failed in the context of a user’s actions, instead of a stack trace. We
might rather know that a test failed when the user clicked Submit Order, rather than
receive a line number in a file. With Gallio and WatiN, this is possible. Tests that might
take weeks to execute manually can finish in an hour.

 UI tests are much, much slower than unit and integration tests, but they are vital in
ensuring our application works end to end. Because of the speed of these tests, their
use should be reserved for scenario-based tests, happy-path or black-box testing, and
regression tests. Unless care is taken to ensure strongly typed tests and to avoid the
magic strings we examined earlier, UI tests become quite brittle. It’s worth noting that
most applications are not easily testable without modifications. Just as we have to
design our code for testability, we need to design our UI for testability. This might
include putting IDs or special class names around certain data-driven elements, or
sharing the view types with our UI tests to ensure that the exact same HTML element
names are used for both HTML generation and UI testing. These changes don’t affect
Figure 12.5 Our test report including a screenshot

311Summary

the end-user experience, and allow us as developers to focus on adding value, rather
than fixing brittle tests.

12.5 Summary
In this chapter, we explored many of the extension points and major feature areas of
ASP.NET MVC and discovered how best to take advantage of these areas in a maintain-
able manner. Although not every practice applies in every context, it is important to
consider all the options available, and the benefits and tradeoffs of each before pro-
ceeding with a design. If you go down a path with filters and magic strings in View-
Data, you might not like the end result. Instead, we can consider the long-term
viability of each option and choose the most appropriate path for each situation.
Some practices are strongly recommended for a maintainable and easily testable code-
base, such as strongly typed views. Others, such as convention-based, REST-style action
names are appropriate only in resource-centric applications.

 Duplication is one of the biggest causes of development attrition, whether using
ASP.NET MVC or another framework. The techniques used to remove duplication have
changed from classic Web Forms, from custom model binders, to action filters and
partials in our views. Although each of these extension points is powerful, none is
appropriate in every context. We examined many of the options for eliminating dupli-
cation in our controllers and views, as well as elaborating on the right contexts for
each of these options.

 We focused on testing these extension points. Because these extension points can
be executed on every request, it is vital to ensure that these extension points behave as
desired. However, the true test of a working MVC application is using it in a browser.
We finished our testing discussion by examining UI testing with WatiN and Gallio, tak-
ing advantage of features in both products to capture screenshots from failures and
logging meaningful test messages. In the next chapter, we’ll examine a variety of real-
world scenarios in the form of in-depth recipes.

Recipes
By now you have seen all of the components of the ASP.NET MVC Framework.
Surely you have asked yourself, How do I do ____ in ASP.NET MVC? Certainly with a
new paradigm it’s natural to feel a bit lost when trying to implement functionality
in your first application. This chapter is geared toward giving you concrete exam-
ples, or recipes, for achieving common functions such as automatic validation or
data access. Take these examples verbatim and use them in your applications, or
simply learn from them and apply the techniques in your own way. We start with cli-
ent-side functionality, move through extending validation, and through a compre-
hensive data access recipe. We finish by replacing the built-in view engine that
comes with ASP.NET MVC, and try out the Spark view engine.

13.1 jQuery autocomplete text box
It’s not uncommon for text boxes to automatically suggest items based on what we
type. The results are further filtered as we type to give us the option to select an

This chapter covers
■ Implementing jQuery autocomplete text box
■ Configuring automatic client-side validation
■ Using NHibernate for data access
■ Integrating the Spark view engine
312

http://castleproject.org
http://castleproject.org

313jQuery autocomplete text box

available item with the mouse or keyboard. One of the first examples of this in the
wild was Google Suggest as shown in figure 13.1.

 A rudimentary implementation of this automatic suggestion feature would be to
monitor key presses and fire off AJAX requests for each one. Of course this means that
a fast typist would trigger many requests, most of which would be immediately dis-
carded for the next request coming in 5 milliseconds. An effective implementation
will take into account a typing delay and also provide keyboard/mouse support for
selecting the items.

 Luckily jQuery has an extensive list of plugins available. One such plugin is Dylan
Verheul’s autocomplete.

NOTE Dylan Verheul’s autocomplete You can download the autocomplete plugin
at http://www.dyve.net/jquery/ with a few others, including googlemaps
and listify.

The basic idea is that you have a simple text box on your page. The jQuery plugin adds

Figure 13.1 Google Suggest filters options as you type.
the behavior necessary to handle key press events and fire the appropriate AJAX requests

http://castleproject.org
http://www.dyve.net/jquery/

314 CHAPTER 13 Recipes

to a URL that will handle the request. The URL points to a controller action, and by con-
vention the response is formatted so that the plugin could handle the response.

 Assume for our purposes that we want to filter U.S. cities in the text box. The first
step is to add a controller, action, and view for displaying the UI for this example.
Ensure that jQuery (in this case jquery-1.2.6.js) and jquery.autcomplete.js are refer-
enced at the top of the view (or master page).

<script type="text/javascript" src="../../scripts/jquery-1.2.6.js"></script>
<script type="text/javascript" src="../../scripts/jquery.autocomplete.js">

➥ </script>

Next, add the text box. In this example we’ll call it city.

<%= Html.TextBox("city") %>

Package this up with a simple controller (listing 13.1), and the result will be similar to
that show in figure 13.2.

public class HomeController : Controller
{
 public ActionResult Index()
 {
 return View();
 }
}

Now we add a little JavaScript to add the autocomplete behavior.

<script type="text/javascript">
 $(document).ready(function() {
 $("input#city").autocomplete('<%= Url.Action("Find", "City") %>');
 });
</script>

Place the script in the <head> of the page. You
can see that the URL for the autocomplete
behavior is specified as Url.Action("Find",
"City"). This will point to a Find() action on
the CityController. We’ll need to write this
controller and action, as shown in list-
ing 13.2.

NOTE Local Data Mode The autocomplete plugin can also filter local data
structures. This is useful when you have a limited set of data, and you
want to minimize requests sent to the server. The autocomplete plugin in
local mode is also much faster, because there is no AJAX request being
made behind the scenes. The only downside is that you must render the
entire array onto the view.

Listing 13.1 Controller and action for displaying our test page

Figure 13.2 Our simple view with a text box

315jQuery autocomplete text box

public class CityController : Controller
{
 private readonly ICityRepository _repository;

 public CityController()
 {
 string csvPath =
 System.Web.HttpContext.Current
 .Server.MapPath("~/App_Data/cities.csv");

 _repository = new CityRepository(csvPath);
 }

 public CityController(ICityRepository repository)
 {
 _repository = repository;
 }

 public ActionResult Find(string q)
 {
 string[] cities = _repository.FindCities(q);
 return Content(string.Join("\n", cities));
 }
}

The details of the CityRepository can be found in the code samples provided with
the book. For now, we’ll focus on the new Find(string q) action. Because this is a
standard action, you can navigate to it in your browser and test it out. Figure 13.3
shows a quick test.

 Now that we are sure that the action is returning the correct results, we can test the
text box. The JavaScript we added earlier hooks up to the key press events on the text
box and should issue queries to the server. Figure 13.4 shows this in action.

 The drop-down selections are unformatted by default, which makes them a little ugly.
CSS magic will make it look nicer. Listing 13.3 shows sample CSS for this transformation.

Listing 13.2 Action to find cities from an autocomplete AJAX request

Load CSV file
containing citites

Load CSV into
repository

Testable
constructor

Autocomplete sends
parameter ‘q’

Return
raw text

Figure 13.3
A simple HTTP GET for
the action with a filter
of “hou” yields the

expected results.

316 CHAPTER 13 Recipes

<style type="text/css">
 div.ac_results ul
 {
 margin:0;
 padding:0;
 list-style-type:none;
 border: solid 1px #ccc;
 }

 div.ac_results ul li
 {
 font-family: Arial, Verdana, Sans-Serif;
 font-size: 12px;
 margin: 1px;
 padding: 3px;
 cursor: pointer;
 }

 div.ac_results ul li.ac_over
 {
 background-color: #acf;
 }
</style>

The options of the autocomplete plugin enable you to configure it to your needs. For
the case that we’ve shown here, it’s as simple as this:

$(your_textbox).autocomplete('your/url/here');

Figure 13.5 shows the autocomplete in action, and table 13.1 shows the various

Listing 13.3 CSS used to style the autocomplete results

Figure 13.4 The results are displayed in
a tag. We can apply CSS to make it
look nicer.
options for the plugin.

317jQuery autocomplete text box

To set these options, include them in a dictionary as the second argument to the
autocomplete method like this:

$("input#city").autocomplete('<%= Url.Action("Find", "City") %>', {
 minChars : 3,
 delay : 300
});

This type of functionality is immensely useful for selecting from large lists. It keeps your
initial page size down by not loading all of these items at once and is user-friendly.

Table 13.1 Common options for the plugin

inputClass This class will be added to the input box.

resultsClass The class to apply to the results’ container. Default value is “ac_results”.

loadingClass The class to apply to the input box while results are being fetched from the
server. Default is “ac_loading.”

lineSeparator The character used to separate the results. The default is \n.

minChars The minimum number of characters before sending a request to the server.
Default is 1.

delay The delay after typing when the request will be sent. Default is 400 ms.

Figure 13.5 The styled drop-down
results look much nicer. The selected
item is highlighted and can be chosen
with the keyboard or mouse.

318 CHAPTER 13 Recipes

13.2 Automatic client-side validation
The ASP.NET MVC Framework includes support for model validation; however the
support doesn’t include client-side validation. The ModelBinders that you learned
about in chapter 3 can be combined with validation attributes, such as those
provided in the System.ComponentModel.DataAnnotations namespace. The Castle
Project also has a good set of validation attributes that you can use on your classes.
These provide simple ways of declaring properties as required, or requiring cer-
tain input.

 We’d like to extend this to automatically render the appropriate JavaScript valida-
tion so that you can define your rules once, and have them used in client-side and
server-side model validation.

 Our preference is to use the Castle Validation attributes. These can be downloaded
at http://castleproject.org. The attributes are easy to use. You simply add the appro-
priate attribute to the property that needs the rule, as shown here:

public class Person
{
 [ValidateNonEmpty]
 public string Name {get;set;}
}

To validate the instance of the class, you run it through the ValidationRunner class.
All of these classes come from the Castle.Components.Validator namespace.

Do I place these attributes on my domain model?
Ask two developers this question and you’ll probably get two different answers. There
are good arguments from both sides. From one perspective, declarative validation is
elegant, requires little code, and works well for simple, data-oriented models. The
other perspective sees value in not allowing domain entities to enter an invalid state.
The perspective favors methods that convey behaviors for state changes rather than
properties with getters and setters.

The decision of whether or not to add validation attributes to your domain model is
contextual. If you’re using a view model—that is, specific classes dedicated for rep-
resenting the data displayed or entered on your UI—they’re great.

View model objects are inherently data oriented, and they provide a realistic repre-
sentation of the data gathered from the UI. Because you always validate user input
before letting it creep into your system, this is a perfect place for declarative valida-
tion attributes.

If you’re using your domain entities on your view directly, then you might favor the
validation attributes within your domain model. If complexity requires you to create
view models to interact with the UI and map to your domain entities, then you’ll probably
want to avoid placing these attributes in your domain model and rely instead on val-
idating the view models.

http://nhforge.org/doc/nh/en/index.html
http://castleproject.org

319Automatic client-side validation

Let’s use an example from Code Camp Server. When users register for a conference,
they need to fill in their name and contact information. These values will eventually
map to domain entities, but initially they are populated in a view model object called
NewAttendeeForm. This class contains all of the properties that are needed to gather
user input from the view.

 public class NewAttendeeForm
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
 public string Url { get; set; }
 public string Notes { get; set; }
 }

After adding the validation attributes, our class now looks like this:

public class NewAttendeeForm
{
 [ValidateNonEmpty]
 public string FirstName { get; set; }

 [ValidateNonEmpty]
 public string LastName { get; set; }

 [ValidateNonEmpty, ValidateEmail]
 public string Email { get; set; }

 [ValidateRegExp("http://(\w+?\.)+\w{3}")]
 public string Url { get; set; }

 public string Notes { get; set; }
 }

The properties FirstName, LastName, and Email are all required. There is a built-in
validator for email address validation for our Email property. We want to verify that
the Url property is correctly formatted. Please excuse the naïve regular expression for
the URL. The proper URL regular expression is enormous and not necessary for this
example. Now that we have the validation attributes specified, we can implement
instance validation inside of a custom model binder. Listing 13.4 shows a custom
model binder for constructing and validating a class decorated with Castle Validators.

public class CastleValidationBinder : DefaultModelBinder
{
 public override object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 object model =
 base.BindModel(controllerContext, bindingContext);

 if (model == null) return model;

 var validator =

Listing 13.4 Custom Castle Validation ModelBinder

Copy values
onto object

B

 new ValidatorRunner(new CachedValidationRegistry());

http://logging.apache.org/log4net/index.html

320 CHAPTER 13 Recipes

 if (!validator.IsValid(model))
 {
 var summary = validator.GetErrorSummary(model);
 foreach (string invalidProperty in
 summary.InvalidProperties)
 {
 foreach (string error in
 summary.GetErrorsForProperty(invalidProperty))

 {
 var modelState = bindingContext.ModelState;
 modelState
 .AddModelError(invalidProperty, error);
 }
 }
 }

 return model;
 }
}

You can see from listing 13.4 that a ValidationRunner class is created B, which then
inspects the model C. If the model object is found to be invalid, it loops over the
properties found to be in error D. Each property might have more than one broken
rule (such as our Email property), so we need to loop over these. After we have a spe-
cific error and property name, we add it to ModelState so that the view can take
advantage of it E.

 We can enable this model binder for our view model by adding the following line
to Application_Start in Global.asax.cs:

ModelBinders.Binders.Add(typeof(NewAttendeeForm),
 new CastleValidationBinder());

We might instead choose to make this the new default model binder, using

ModelBinders.Binders.DefaultBinder = new CastleValidationBinder();

At this point we have a complete functioning model binder that will validate the
model as it’s created. Now consider the following action:

[AcceptVerbs(HttpVerbs.Post)]
public ActionResult Index(NewAttendeeForm newAttendeeForm)
{
 if(!ModelState.IsValid)
 {
 return View();
 }

 TempData["message"] = "You were successfully registered";
 return RedirectToAction("index");
}

The newAttendeeForm will be created (and validated) with our custom model binder.
If errors are found, they will be present in ModelState. This completes the server-side
validation; however we still need to add client-side validation to avoid having to POST

C

D

E

to the server just to get simple validation errors.

321Automatic client-side validation

 In the view, we’ll need a simple helper that will output the appropriate JavaScript
to automatically validate the form fields. The rules will come from the same attributes
we defined earlier. We’ll leverage a jQuery plugin called jQuery.validation.js. You
can get this file from http://bassistance.de/jquery-plugins/jquery-plugin-validation/.

Now that we know the basics of the validation plugin, we can write a helper class to
automatically output the required JavaScript based on the validation attributes we
placed on our model.

 The basic idea is that we’ll pass in the model into a helper method. The helper will
look for the attributes decorated on the class and return any JavaScript needed to vali-
date each one.

 We’ll start by writing a function to get the validation attributes from a property:

private static AbstractValidationAttribute[] GetValidationAttributesFor(
 PropertyInfo property)
{
 return (AbstractValidationAttribute[])property.GetCustomAttributes(
 typeof(AbstractValidationAttribute), true);
}

Next, we’ll write a function that will take the attribute and property and return the
JavaScript required to validate it.

private static string GetAttributeValidation(PropertyInfo property,

Using jquery.validation
The jQuery Validation plugin requires jQuery 1.2.6 or greater. This plugin validates
a form as simple as

$("#myForm").validate();

The rules for the form can be passed in as arguments to the validate method like this:

$("#myForm").validate({
 rules:{
 username:{
 required:true,
 minlength:3
 }
 }
});

Some rules can be applied directly to a form element, like this:

<input type="text" id="username" class="required" minlength="3" />

Custom rules can also be added. We’ll see an example of this later on.

The submit button of the form will now trigger client-side validation for the form. If any
fields are found to be invalid, the form POST will be cancelled, and the user will have
an opportunity to correct the error.
 AbstractValidationAttribute attrib)

http://www.informit.com/articles/article.aspx?p=25862
http://nhforge.org/doc/nh/en/index.html
http://bassistance.de/jquery-plugins/jquery-plugin-validation/

322 CHAPTER 13 Recipes

{
 if (attrib is ValidateNonEmptyAttribute)
 return AddCssClass(property.Name, "required");

 if (attrib is ValidateEmailAttribute)
 return AddCssClass(property.Name, "email");

 if (attrib is ValidateRegExpAttribute)
 {
 var validator = (RegularExpressionValidator) attrib.Build();
 return string.Format(
 "$('#{0}').rules('add', {{regex:'{1}'}});",
 property.Name, validator.Expression);
 }

 return string.Empty;
}

Here we’re handling three of the validation attributes (the ones that are easy to handle
in JavaScript). Creating the first two (ValidateNonEmptyAttribute and Validate-
EmailAttribute) is as simple as adding a CSS class. The regular expression validation
is not built in, so we have to add a custom function for this. The custom validation script
is defined like this:

$.validator.addMethod(
'regex',
function(value, element, regexp) {
 var check = false;
 var re = new RegExp(regexp);
 return this.optional(element) || re.test(value);
 },
'Please check your input.');

We’ll have to add this function along with our other validation script. The AddCss-
Class() method we saw earlier simply uses jQuery to add a CSS class to the specified
element:

private static string AddCssClass(string name, string className)
{
 return string.Format("$('#{0}').addClass('{1}');",
name,
className);
}

Armed with these pieces of code, we can finally write our helper. The entire helper is
shown in listing 13.5.

public static class ValidationHelpers
{
 public static string ClientValidationFor<T>(this HtmlHelper<T> html,
 T model) where T : class
 {

Listing 13.5 Helper for the client-side validation for Castle Validation attributes

Validator
name

Validation function

Error message
 var js = new StringBuilder();

http://xval.codeplex.com
http://xval.codeplex.com
http://blog.codeville.net

323Automatic client-side validation

 js.AppendLine("<script type='text/javascript'>");
 js.AppendLine(CustomRegexRule);
 js.AppendLine("$(function() {");
 js.AppendFormat("$('form').validate();");

 var properties = typeof (T).GetProperties();

 foreach(var property in properties)
 foreach(var attrib in GetValidationAttributesFor(property))
 js.AppendLine(GetAttributeValidation(property, attrib));

 js.AppendLine("});");
 js.AppendLine("</script>");
 return js.ToString();
 }

 private const string CustomRegexRule =
 @"$.validator.addMethod('regex', function(value, element, regexp) {
 var check = false;
 var re = new RegExp(regexp);
 return this.optional(element) || re.test(value);
 }, 'Please check your input.');";

 private static AbstractValidationAttribute[]
 GetValidationAttributesFor(PropertyInfo property)
 {
 return (AbstractValidationAttribute[])property.GetCustomAttributes(
 typeof(AbstractValidationAttribute), true);
 }

 private static string GetAttributeValidation(PropertyInfo property,
 AbstractValidationAttribute attrib)
 {
 if (attrib is ValidateNonEmptyAttribute)
 return AddCssClass(property.Name, "required");

 if (attrib is ValidateEmailAttribute)
 return AddCssClass(property.Name, "email");

 if (attrib is ValidateRegExpAttribute)
 {
 var validator = (RegularExpressionValidator) attrib.Build();
 return string.Format("$('#{0}').rules('add',
 {{regex:'{1}'}});", property.Name, validator.Expression);
 }

 return string.Empty;
 }

 private static string AddCssClass(string name, string className)
 {
 return string.Format("$('#{0}').addClass('{1}');",
 name, className);
 }
}

Usage of our helper is incredibly simple. On the view in question, we’ll simply add

<%= Html.ClientValidationFor(Model) %>

http://sparkviewengine.com/

324 CHAPTER 13 Recipes

We pass in the Model property, which means our view is defined as ViewPage<New-
AttendeeForm>.

 Of course we’ll also have to add the <%@ Import Namespace="…" %> to the top of the
view for our helper to be recognized. Listing 13.6 shows our sample view.

<%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage<NewAttendeeForm>" %>
<%@ Import Namespace="AutomaticValidation.Models"%>
<%@ Import Namespace="AutomaticValidation.Helpers"%>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="server">

 <h2>Register for the conference!</h2>

 <%= Html.ClientValidationFor(Model) %>

 <%= Html.ValidationSummary("Registration was unsuccessful. Please correct
the errors and try again.") %>

 <% using (Html.BeginForm()) {%>
 <fieldset>
 <label for="FirstName">FirstName:</label>
 <%= Html.TextBox("FirstName") %>
 <%= Html.ValidationMessage("FirstName", "*") %>

 <label for="LastName">LastName:</label>
 <%= Html.TextBox("LastName") %>
 <%= Html.ValidationMessage("LastName", "*") %>

 <label for="Email">Email:</label>
 <%= Html.TextBox("Email") %>
 <%= Html.ValidationMessage("Email", "*") %>

 <label for="Blog">Blog:</label>
 <%= Html.TextBox("Blog") %>
 <%= Html.ValidationMessage("Blog", "*") %>

 <label for="Comments">Comments:</label>
 <%= Html.TextBox("Comments") %>
 <%= Html.ValidationMessage("Comments", "*") %>

 <input type="submit" value="Register" />
 </fieldset>
 <% } %>
</asp:Content>

The client-side validation script will now be rendered with the view. We still need to
retain the server-side validation summary, in case the user doesn’t have JavaScript
enabled. Never rely on client-side validation. It’s a friendly addition to forms; however
it’s no replacement for solid validation on the server.

 If we run our view and start to enter invalid data, we’ll see it right away. Figure 13.6
shows it running.

 The validation helper that we created demonstrates a fairly easy way of getting
JavaScript validation free. This allows us to define the rules in one place (the attributes)

Listing 13.6 Using automatic client-side validation helper in the view

Add validation
scripts

Display ModelState
errors
and use them both in server-side and client-side validation. The implementation that

325Data access with NHibernate

we created still has room for improvement. For example, custom error messages are not
yet implemented. In addition, we handle only three of the dozens of validation attri-
butes that are present in the Castle validation library.

NOTE xVal Validation Framework Steve Sanderson (http://blog.codeville.net)
started a project to fill this need. It’s called the xVal Validation Frame-
work. This project allows you to define your rules in a variety of ways (Cas-
tle validators, DataAnnotations attributes, custom). It also allows you to
utilize one of a few client-side validation libraries, such as jQuery Valida-
tion and LiveValidation. The xVal Framework is much richer in function-
ality. Consider using it in your projects for more flexibility. Download it
at http://xval.codeplex.com.

13.3 Data access with NHibernate
Even though the ASP.NET MVC Framework is focused on the presentation layer, many

Figure 13.6 Seeing our client-side validation in action, we notice that the error messages automatically
show up without a trip to the server.
developers work on small applications that do not need several layers of business logic

http://blog.codeville.net
http://xval.codeplex.com

326 CHAPTER 13 Recipes

and separation between the presentation layer and the data store. For these small
applications, simpler separation patterns may be appropriate; however, many small
applications grow much larger than originally anticipated. When this happens, SoC is
critical to the long-term maintainability of the software. NHibernate is a popular
object-relational mapper. It makes data access with relational databases trivial. As with
anything new, there is a learning curve associated with understanding the method of
configuring the mapping between objects and tables. This recipe demonstrates how to
configure and leverage NHibernate when developing an application whose UI takes
advantage of the ASP.NET MVC Framework.

13.3.1 Functional overview of reference implementation

Our reference implementation is on top of the default project template. The func-
tionality that is added is the capability to track visits to the site. Each page tracks visi-
tors. The site tracks the following pieces of data:

■ URL
■ Login name
■ Browser
■ Date and time
■ IP address

We see in figure 13.7 that by running the application the most recent visits are dis-
played at the bottom of the page. Each page displays the recent visits.

Figure 13.7 Recent visitors are displayed at the bottom of every page.

327Data access with NHibernate

We have intentionally kept the scope of this recipe small so we can focus on the usage
of NHibernate as the data access library that allows us to persist and retrieve Visitor
objects. Before we go into each layer of the application, let’s review the architecture of
this application at a high level.

13.3.2 Application architecture overview

At a broad level, this application uses DDD inside an Onion Architecture. At a high
level, the application is composed of a domain model at its core. Figure 13.8 shows a
reference layout of Onion Architecture.

The solution structure implements the
decoupling strategy that Onion Architecture
requires. In figure 13.9, you can see the solu-
tion structure with the Core project’s refer-
ences expanded. This application has a
simple core, and the libraries referenced to
implement the core are straightforward.
Notice that there is no reference to NHiber-
nate.dll from the Core project. It’s important
that the Core remain portable and not cou-
pled to external libraries that will change
over time. As with everything in software, this
is a trade-off. You may feel comfortable cou-
pling to some libraries, but evaluate the con-
sequences carefully.

Figure 13.8 The
Onion Architecture
uses the concept of
an application core
that doesn’t depend
on external libraries,
such as NHibernate.

Figure 13.9 The Core project has minimal
references and no external dependencies.

328 CHAPTER 13 Recipes

 If we expand more of the projects, we

see that no project references the Infra-
structure project except for Integration-
Tests, which is not deployed to production
anyway. Figure 13.10 shows the solution fully
expanded. Only the Infrastructure project
references NHibernate.dll; no project refer-
ences Infrastructure. When we examine the
UI project, we’ll see how the application is
organized at runtime to function properly.
Note that this recipe is not focused on auto-
mated testing, so many of the necessary auto-
mated tests are omitted for the sake
of brevity.

 Now that we understand how the appli-
cation is structured at a high level, we’ll
explore each layer bit by bit. We’ll begin
with the domain model.

13.3.3 Domain model—the application core

The domain model is the most important
part of the application. Without the
domain model, all of the pertinent con-
cepts would be represented only in the UI.
Our particular domain model contains a
single aggregate made up of a single entity,
the Visitor. The code for the Visitor
class is shown in listing 13.7.

Figure 13.10 No project references
Infrastructure. This arrangement is

important for decoupling.

329Data access with NHibernate

using System;

namespace Core
{
 public class Visitor
 {
 public virtual Guid Id { get; set; }
 public virtual string PathAndQuerystring { get; set; }
 public virtual string LoginName { get; set; }
 public virtual string Browser { get; set; }
 public virtual DateTime VisitDate { get; set; }
 public virtual string IpAddress { get; set; }
 }
}

We have no business logic here, and at first glance it looks just like a data structure. All
other concerns have been left out in an effort to include only abstractions and logic
that are necessary for leveraging NHibernate in a loosely coupled way.

 The Visitor class contains properties for all of the pieces of information that we
want to record. The Id property exists as an identifier for the particular visit. We could
certainly use Int32 as the ID, but in a data persistence environment, that forces a
dependency on the data store for the generation of a unique Int32 value. Sometimes
this is appropriate, but in DDD, the developer errs on the side of giving responsibility
to the domain model, not the data store. In line with that, the Id is a Guid, and the
application will generate a Guid before attempting to save to the database.

 The mechanism for persisting or retrieving a Visitor is called a repository. The
repository will save our entity as well as retrieve it. It can also represent filtering opera-
tions. In our domain model, we have an IVisitorRepository. This interface is seen
in listing 13.8.

namespace Core
{
 public interface IVisitorRepository
 {
 void Save(Visitor visitor);
 Visitor[] GetRecentVisitors(int numberOfVisitors);
 }
}

With our repository, we are able to save a visitor as well as get the most recent visitors.
We can ask for a specific number of recent visitors. In figure 13.10, you see that the
Core project doesn’t contain any class that implements IVisitorRepository. This is
important because the class that actually does the work represented by the interface
will be responsible for the persistence, which is not a domain model concern. Persis-
tence is infrastructure. I could imagine that this functionality would work equally well
if I persisted the data to a file instead of the database. The mechanism of persistence is

Listing 13.7 Visitor class is domain model for this recipe.

Listing 13.8 The repository defines the persistence operations.

330 CHAPTER 13 Recipes

not a concern for the domain model; therefore, the class responsible for it is not in
the Core project.

 The concern that is in the Core project, however, is a factory that is capable of
locating or creating an instance of IVisitorRepository. The VisitorRepository-
Factory is responsible for returning an instance of our repository. Listing 13.9 shows
that the knowledge of how to create the factory doesn’t reside with this class. This fac-
tory class merely represents the capability to return the class.

using System;

namespace Core
{
 public class VisitorRepositoryFactory
 {
 public static Func<IVisitorRepository> RepositoryBuilder =
 CreateDefaultRepositoryBuilder;

 private static IVisitorRepository CreateDefaultRepositoryBuilder()
 {
 throw new Exception("No repository builder specified.");
 }

 public IVisitorRepository BuildRepository()
 {
 IVisitorRepository repository = RepositoryBuilder();
 return repository;
 }
 }
}

To even the inexperienced eye, this class doesn’t seem useful alone. When BuildFac-
tory() is called, an exception will be thrown. Out of the box, the domain model doesn’t
know the implementation of IVisitorRepository that will be used, so there is no way
to embed this knowledge into compiled code. The public static RepositoryBuilder
property will have to be set to something useful before the factory will work properly.
We’ll see how this is accomplished after all the pieces have been introduced.

 This explicit factory is not necessary if you’re using an IoC container that has been
left out for the sake of simplicity. This domain model is simple. This is all there is. The
next step is to understand how we configure NHibernate to automatically persist our
entity to the database.

13.3.4 NHibernate configuration—infrastructure of the application

There is little code to write in order to leverage NHibernate for seamless persistence.
NHibernate is a library, not a framework; the difference is important. Frameworks pro-
vide templates of code in which you then fill in the gaps to create something useful.
Libraries are usable without providing templates. NHibernate doesn’t require your
entities to derive from a specific base class or the implementation of a specific inter-

Listing 13.9 Factory offers capability to get repository.

Initialize at
application startup

Throw if factory
not initialized

Use delegate to
build repository
face. NHibernate can persist any type of object as long as the configuration is correct.

331Data access with NHibernate

This section will walk through the configuration of NHibernate so that we can save
and retrieve the Visitor object.

 Before we dive into the configuration, let’s example the implementation of the
IVisitorRepository interface specified in the domain model. The purpose for start-
ing with this class is to demonstrate how little code is actually written when calling
NHibernate to perform a persistence operation. Listing 13.10 shows the Visitor-
Repository class located in the Infrastructure project.

using System.Collections.Generic;
using System.Linq;
using Core;
using NHibernate;

namespace Infrastructure
{
 public class VisitorRepository : IVisitorRepository
 {
 public void Save(Visitor visitor)
 {
 ISession session = GetSession();
 session.SaveOrUpdate(visitor);
 }

 public Visitor[] GetRecentVisitors(int numberOfVisitors)
 {
 IList<Visitor> visitors = GetSession()
 .CreateQuery(
 "select v from Visitor v order by v.VisitDate desc"
).SetMaxResults(numberOfVisitors)
 .List<Visitor>();

 return visitors.ToArray();
 }

 private ISession GetSession()
 {
 var cache = new SessionCache();
 ISession session = cache.GetSession();
 return session;
 }
 }
}

This class is a total of 34 lines long, and many lines are largely whitespace. The code
that leverages the NHibernate APIs is limited. Now that we see what it looks like to call
NHibernate, we’ll walk through the configuration process of NHibernate and explore
each step. We’ll start with the main configuration.
LIKE ANY .NET APPLICATION, NHIBERNATE NEEDS CONFIGURATION

The beginning of the configuration process is the hibernate.cfg.xml file. This file is
the same name as that used by the Hibernate library in Java. Because NHibernate
started as a port from Hibernate, this is just one of the many similarities. Knowledge of

Listing 13.10 Repository implementation coupled to NHibernate APIs

Use HQL
to select
Visitors

Return array
of Visitors

Retrieve session
from cache
one largely translates directly to the other.

332 CHAPTER 13 Recipes

 The contents of the hibernate.cfg.xml file can also be put into the web.config file
or app.config file. For simple applications, embedding this information into the .NET
configuration file may be adequate; we should emphasize that this example stresses
separation so that when applied to a medium-sized application, the code and configu-
ration don’t run together. We have seen web.config files grow large, and it’s trivial to
store the NHibernate configuration in a dedicated file. Listing 13.11 shows the con-
tents of the hibernate.cfg.xml file.

<hibernate-configuration xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 server=.\SQLExpress;database=NHibernateSample;
 Integrated Security=true;
 </property>
 <property name="show_sql">false</property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2005Dialect
 </property>
 <property name="adonet.batch_size">100</property>
 <mapping assembly="Infrastructure" />
 </session-factory>
</hibernate-configuration>

This is a simple configuration, and there are many other options offered with the
NHibernate documentation (http://nhforge.org/doc/nh/en/index.html). The most
obvious piece of information is the connection string. Also, the driver class and dialect
specify the details of the database engine used. This sample uses SQL Server 2005, but
these values would change if you wanted to use any version of Oracle, SQLite, or the
many other database engines supported out of the box.

 The show_sql property will output each SQL query to the Console as the statement
is being sent to the database. This is useful for debugging. The adonet.batch_size
controls how many updates, deletes, or inserts will be sent to the database in a single
batch. It’s more efficient to send multiple statements in a single network call than to
make a separate network call for each statement. NHibernate will do this automati-
cally. The last, but most important configuration item is the assembly where NHiber-
nate can find the mapping files. We are telling NHibernate to look in the
Infrastructure project to find the mappings.
THE NHIBERNATE MAPPING FILES—SIMPLE BUT POWERFUL

NHibernate requires at least one mapping file. You can put the mappings for many enti-
ties in a single mapping file, but it’s a better practice to segment out each “class” node.
The class node represents an entity. Figure 13.11 shows the Infrastructure project.

 We are about to explore the Visitor.hbm.xml file, which contains the mapping infor-
mation for the Visitor class. First, notice the four files that are linked into the project:

Listing 13.11 Hibernate.cfg.xml file contains database connection information.

http://nhforge.org/doc/nh/en/index.html

333Data access with NHibernate

■ Hibernate.cfg.xml
■ Log4Net.config
■ Nhibernate-configuration.xsd
■ Nhibernate-mapping.xsd

These files do not belong to the project directly; they
are linked from elsewhere. We do this because multi-
ple projects need the same copy of these files. The
first example that needs linked files is the Integra-
tionTests. It will contain tests for all data access. To
test the data access, the tests need to leverage the
same configuration as the application.

 We have already covered the hibernate.cfg.xml
file. The Log4Net.config file contains Log4Net con-
figuration information that is broadly applicable to any type of application. If you’re
not familiar with Log4Net, you can find more information at http://logging.
apache.org/log4net/index.html. The two files provide the schema for the NHiber-
nate configuration and the NHibernate mapping files. When added to the project,
they enable Visual Studio to provide XML IntelliSense when you are editing these files.
It makes the editing process smooth. We edit mapping files most heavily. Without this
XML IntelliSense, it would be cumbersome to maintain these XML files.

 Let’s now turn to the mapping file for the Visitor class. We’ll open the Visi-
tor.hbm.xml file and examine its structure, as shown in listing 13.12.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 namespace="Core" assembly="Core">

 <class name="Visitor" table="Visitors" dynamic-update="true">
 <id name="Id" column="Id" type="Guid">
 <generator class="guid.comb"/>
 </id>
 <property name="PathAndQuerystring" length="4000" not-null="true"/>
 <property name="LoginName" length="255" not-null="true"/>
 <property name="Browser" length="4000" not-null="true"/>
 <property name="VisitDate" not-null="true"/>
 <property name="IpAddress" not-null="true"/>
 </class>
</hibernate-mapping>

The first node is pretty standard and declares the NHibernate XML namespace. Then,
the default namespace and assembly are declared. Without these, the class name
would have to be fully qualified, and when mapping files get more complex than this,
you want to avoid having to fully qualify type names.

 The class node contains the information about how to persist the Visitor class.
We want the table name to be different from the class name, so we declare it. If we did

Listing 13.12 Visitor.hbm.xml file contains mapping for the Visitor class.

Figure 13.11 The Infrastructure
project contains the Visitor.hbm.xml
mapping file.
not declare the table name, NHibernate would use the class name.

http://logging.apache.org/log4net/index.html
http://logging.apache.org/log4net/index.html

334 CHAPTER 13 Recipes

 The id node is special, and it has to be the first property mapped on an entity. This
will become the primary key on the table, and there are many ways to handle it. The
generator node has many options, including SQL Server “identity” and Oracle
“sequence” functionality. We want the object to have a value in the Id property before
being persisted, so we are configuring NHibernate to generate a Guid for us before
issuing the INSERT statement to the database. The guid.comb generator is special, and
it generates GUIDs in sequential order so that the clustered index on the primary key
column has little to do when absorbing a new record inserted into the table. This
sequencing sacrifices a bit of uniqueness in the GUID algorithm, but in this context,
the only thing that is important is that the GUID be unique for this particular table.
You can read more about the COMB GUID from the inventor, Jimmy Nilsson: http://
www.informit.com/articles/article.aspx?p=25862.

 The rest of the properties are largely self-explanatory. They have names, con-
straints, and the strings can have a length specified. If you’re all right with the column
name being the same as the property name on the class, then a column attribute is
unnecessary. When you have all the properties mapped, you’re ready to move on. If
you have a more complex class structure, you will want to review all your mapping
options in the documentation at http://nhforge.org/doc/nh/en/index.html.
INITIALIZING THE CONFIGURATION

There are two main abstractions in NHibernate: ISessionFactory and ISession. A
session factory creates a session. A session is meant to be used for a single transaction.
You should use and then quickly dispose of NHibernate sessions. The session factory is
intended to be kept for the life of the application so that it can be used to create all
sessions. The interface is the abstraction, but the implementation provided by NHiber-
nate requires some understanding. The code in listing 13.13 shows how to create the
session factory that will be used for the life of the application.

var configuration = new Configuration();
configuration = configuration.Configure();
SessionFactory = configuration.BuildSessionFactory();

The session factory is expensive to create. By expensive, we mean that it accesses the
file system and parses XML from embedded resources inside DLLs. The configuration
object is going to read the hibernate.cfg.xml file (out-of-process call), and then it will
build the session factory using this configuration. When building the session factory, it
will retrieve all the mapping files from within the DLL files (out-of-process call). Each
mapping file will be parsed using the XML DOM, and then it uses reflection on all the
types to ensure that every property declared in the mapping files actually exists on the
types referenced. If lazy loading is enabled (the default), it will also check that all pub-
lic properties and methods are marked virtual. If you prefer not to mark them virtual,
disable lazy loading. With most applications, it takes several seconds to create the ses-

Listing 13.13 A Configuration object creates a session factory.

Configure NHibernate
using XML configuration

Build and cache
session factory
sion factory; this operation is not something you want to do often. If you create the

http://www.informit.com/articles/article.aspx?p=25862
http://www.informit.com/articles/article.aspx?p=25862
http://nhforge.org/doc/nh/en/index.html

335Data access with NHibernate

session factory for every web request, your web application will slow down dramati-
cally. We push the session factory instance in a static variable so we can hold on to it
for the life of the application.

 The NHibernate session, on the other hand, is cheap. We’ll create and destroy
many of these objects. In a stateful application, we’ll use a session for a single transac-
tion or user operation. For a web application, we’ll use one session per web request.
We’ll cover the web application usage is just a bit. The code for the creation of a ses-
sion is shown in listing 13.14.

ISession session = SessionFactory.OpenSession();

Before we can move on to the code that uses all this, we have to have a database. We
have declared our connection string, and with the mapping, NHibernate knows the
table structure. We can proceed to create our database schema manually, or we can
get NHibernate to help us out. After creating an empty database named “NHibernate-
Sample” inside SQL Server Express, as declared by the connection string, we can exe-
cute the code shown in listing 13.15 to have NHibernate create our schema.

using NHibernate.Cfg;
using NHibernate.Tool.hbm2ddl;
using NUnit.Framework;

namespace IntegrationTests
{
 [TestFixture]
 public class DatabaseTester
 {
 [Test, Explicit]
 public void CreateDatabaseSchmea()
 {
 var export = new SchemaExport(new Configuration().Configure());
 export.Execute(true, true, false, true);
 }
 }
}

We are using an NUnit test fixture as an easy launching point for this code. It makes it
trivial to run the code snippet. After running this test, we’ll see the output in the out-
put windows similar to listing 13.16.

------ Test started: Assembly: IntegrationTests.dll ------

if exists (select * from dbo.sysobjects where id = object_id(N'Visitors') and
OBJECTPROPERTY(id, N'IsUserTable') = 1) drop table Visitors

Listing 13.14 The session is inexpensive to create.

Listing 13.15 NHibernate generates database from mappings.

Listing 13.16 Output from schema export shows table DDL

Session factory
provides the session
create table Visitors (

336 CHAPTER 13 Recipes

 Id UNIQUEIDENTIFIER not null,
 PathAndQuerystring NVARCHAR(4000) not null,
 LoginName NVARCHAR(255) not null,
 Browser NVARCHAR(4000) not null,
 VisitDate DATETIME not null,
 IpAddress NVARCHAR(255) not null,
 primary key (Id)
)

1 passed, 0 failed, 0 skipped, took 6.86 seconds.

The NUnit test lives in the IntegrationTests
project. This project also links in the hiber-
nate.cfg.xml file to leverage the same configu-
ration. Figure 13.12 shows the IntegrationTests
project structure. We have kept it minimal for
the sake of simplicity.

 Notice the VisitorRepositoryTester

class. You can probably guess what this class
does. That’s right! It contains the automated
testing necessary to ensure that the repository
implementation functions as expected. We
can’t write unit tests for data access. Data
access, by its very nature, is an integration test concern. Not only are we integrating a
third-party library, NHibernate, but we are also expecting another process to be run-
ning on our network, server, or workstation. SQL Server must be up and running. It
also must contain the correct schema. If anything is wrong along the way, the tests will
fail. Because of this arrangement, these integration tests are larger than we would
expect for simple unit tests. Even so, keep them as small as possible, and only test the
data access. Listing 13.17 shows the code for the VisitorRepositoryTester.

using System;
using Core;
using Infrastructure;
using NHibernate;
using NHibernate.Cfg;
using NUnit.Framework;
using NUnit.Framework.SyntaxHelpers;

namespace IntegrationTests
{
 [TestFixture]
 public class VisitorRepositoryTester
 {
 [Test]
 public void When_saving_should_write_to_database()
 {

Listing 13.17 Integration test verifies mappings and database are correct

Figure 13.12 The IntegrationTests
project contains tests for all the mappings
and repositories.
 var config = new DataConfig(); Configure NHibernate

337Data access with NHibernate

 config.PerformStartup();
 config.StartSession();

 var visitor = new Visitor
 {
 Browser = "1",
 IpAddress = "2",
 LoginName = "3",
 PathAndQuerystring = "4",
 VisitDate = new DateTime(2000, 1, 1)
 };

 var repository = new VisitorRepository();
 repository.Save(visitor);

 config.EndSession();
 config.StartSession();

 ISession session = new SessionCache().GetSession();
 var loadedVisitor = session.Load<Visitor>(visitor.Id);

 Assert.That(loadedVisitor, Is.Not.Null);
 Assert.That(loadedVisitor.Browser, Is.EqualTo("1"));
 Assert.That(loadedVisitor.IpAddress, Is.EqualTo("2"));
 Assert.That(loadedVisitor.LoginName, Is.EqualTo("3"));
 Assert.That(loadedVisitor.PathAndQuerystring,
 Is.EqualTo("4"));
 Assert.That(loadedVisitor.VisitDate,
 Is.EqualTo(new DateTime(2000, 1, 1)));
 }

 public void SetUpNewSession()
 {
 new DatabaseTester().CreateDatabaseSchmea();
 var configuration = new Configuration();
 configuration = configuration.Configure();
 ISessionFactory factory = configuration.BuildSessionFactory();
 new SessionCache().CacheSession(factory.OpenSession());
 }
 }
}

These tests are essential to ensuring that every query generated by NHibernate is
tested and retested with every build. Because configuration changes will change the
queries that are generated, tests are important for the stability of the application.
When we run this test, we see that it passes, as shown in figure 13.13.

 You now know the basics of persisting with NHibernate. All NHibernate coupling
should remain in the Infrastructure project. Remember that none of the other proj-
ects have a reference to Infrastructure, so the rest of the code is not coupled to this
particular data access library. This decoupling is important because data access meth-
ods change very frequently. You do not want to couple your application to infrastruc-
tural concerns when they are likely to change frequently.

 Now that we have covered both the Core and Infrastructure, we’ll see how this ties
together in the UI.

Create new Visitor

Save Visitor

Create new
session Reload

Visitor

Assert
correct
data

338 CHAPTER 13 Recipes

13.3.5 UI leverages domain model

Now that the domain model and the NHiber-
nate infrastructure are set up and function-
ing, we can turn our attention once again to
the ASP.NET MVC project. We have left the
project close to the default template in an
effort to keep it simple as well as call out the
additions necessary to enable the saving of
every visitor to the site. Figure 13.14 shows the
structure of the UI project.

 From figure 13.7 you can recall that each
page on the site shows the most recent visi-
tors to the site at the bottom. To share this
view on each page, we have wired up a partial
view to the master page, Site.Master. We have
covered this capability in previous chapters,
so we won’t cover it in depth here.

 At the highest level, we have added an
action filter attribute to each controller. If the
site contains many controllers, we would con-
sider introducing a Layer Supertype for all
controllers and applying the filter to just that
controller. In this example, the project con-
tains only the HomeController and Account-
Controller. The HomeController is shown in
listing 13.18. Notice the action filters applied
at the class level.

Figure 13.13 When the repository test passes, we know the mapping is correct.

Figure 13.14 The additions to the project
are boxed. We have added several files to
support the capture and display of visitors.

339Data access with NHibernate

using System.Web.Mvc;

namespace UI.Controllers
{
 [HandleError]
 [VisitorAdditionFilter(Order = 0)]
 [VisitorRetrievalFilter(Order = 1)]
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 ViewData["Message"] = "Welcome to ASP.NET MVC!";

 return View();
 }

 public ActionResult About()
 {
 return View();
 }
 }
}

We have introduced two filters, the VisitorAdditionFilter B, and the Visitor-
RetrievalFilter C. We have applied the Order optional parameter to ensure that
they are executed in the intended order. It may be confusing, but the order the attri-
butes are applied to the class is not the execution order. We want to persist a new visi-
tor before we get the list of recent visitors and pass the objects to a view. Listing 13.19
shows both of the action filters.

using System.Web.Mvc;
using Core;

namespace UI
{
 public class VisitorAdditionFilter : ActionFilterAttribute
 {
 private readonly IVisitorRepository _repository;

 public VisitorAdditionFilter(IVisitorRepository repository)
 {
 _repository = repository;
 }

 public VisitorAdditionFilter() :
 this(new VisitorRepositoryFactory().BuildRepository())
 {
 }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 var builder = new VisitorBuilder();

Listing 13.18 Action filters applied to controller to keep concerns separated

Listing 13.19 Action filters interact with domain model.

B
C

B

C

340 CHAPTER 13 Recipes

 Visitor visitor = builder.BuildVisitor();
 _repository.Save(visitor);
 }
 }
}

using System.Web.Mvc;
using Core;

namespace UI
{
 public class VisitorRetrievalFilter : ActionFilterAttribute
 {
 private readonly IVisitorRepository _repository;

 public VisitorRetrievalFilter(IVisitorRepository repository)
 {
 _repository = repository;
 }

 public VisitorRetrievalFilter() : this(
 new VisitorRepositoryFactory().BuildRepository())
 {
 }

 public override void OnResultExecuting(
 ResultExecutingContext filterContext)
 {
 Visitor[] visitors = _repository.GetRecentVisitors(10);
 filterContext.Controller
 .ViewData[Constants.ViewData.VISITORS] = visitors;
 }
 }
}

Each of the filters is simple. Most of the code is just for managing the dependency of the
IVisitorRepository and building the repository from the factory B. The three lines
of work that are interesting are in the OnResultExecuting method C. We build the vis-
itor and save it D. Then we get the recent visitors and push them into view data E. The
VisitorBuilder class is not shown, but it’s a simple one that constructs a Visitor and
populates it with information from the HttpRequest. The next interesting file is the Vis-
itors.ascx partial view located in /Views/Shared/Visitors.ascx. Listing 13.20 shows
this partial view.

<%@ Control Language="C#"
Inherits="System.Web.Mvc.ViewUserControl<Visitor[]>" %>

<%@ Import Namespace="Core"%>
<div style="text-align:left">
<h3>Recent Visitors</h3>
 <%foreach (var visitor in ViewData.Model){%>
 <%=visitor.VisitDate%> -
 <%=visitor.IpAddress%> -

Listing 13.20 Partial view is strongly typed and displays recent visitors.

D

B

C

E

 <%=visitor.LoginName%> -

341Data access with NHibernate

 <%=visitor.PathAndQuerystring%>

 <%=visitor.Browser%><hr />
 <%}%>
</div>

This partial is added to the page via the master page. The array of visitors is
expected to be in ViewData.Model so that the array can be rendered the default way.
At the bottom of the master page, the following code passes just the visitor array to
the partial: <%Html.RenderPartial(Constants.Partials.VISITORS, ViewData[Con-
stants.ViewData.VISITORS]); %>.

 We use the constants so that the views do not contain duplicate string literals. Since
logging and displaying visitor information are cross-cutting concerns for the applica-
tion, we have taken steps to keep the logic factored out so that it can be shared across
all controllers in the application. Let’s review what we have done:

■ Kept the persistence logic behind an interface that doesn’t belong to the UI
project

■ Leveraged action filters so that no single controller is responsible for knowing
how to interact with IVisitorRepository

■ Created a partial view to own the layout of the recent visitors
■ Delegated to the partial view from the master page so that individual views

don’t have to care about it

All the pieces are now in place to be pulled together.

13.3.6 Pulling it together

If you have been keeping a close eye on the code up to this point, you have noticed
that we do not have a default way to create the NHibernate repository instance of
IVisitorRepository that lives in the Infrastructure project. Our UI project doesn’t
reference the Infrastructure project at all. This section walks through the process of
wiring up these decoupled pieces.

 The first piece is in the web.config file. Inside the httpModules node, we have reg-
istered an extra module:

<add name="StartupModule" type="Infrastructure.NHibernateModule, Infrastructure,

➥ Version=1.0.0.0, Culture=neutral"/>

This module kicks off the process of creating the session factory. It also hooks the
BeginRequest and EndRequest events and creates and destroys NHibernate sessions
for each web request. Listing 13.21 shows the code for NHibernateModule.cs, which
lives in the Infrastructure project.

using System;
using System.Web;

namespace Infrastructure

Listing 13.21 NHibernateModule kick-starts NHibernate.
{

342 CHAPTER 13 Recipes

 public class NHibernateModule : IHttpModule
 {
 private static bool _startupComplete = false;
 private static readonly object _locker = new object();

 public void Init(HttpApplication context)
 {
 context.BeginRequest += context_BeginRequest;
 context.EndRequest += context_EndRequest;
 }

 private void context_BeginRequest(object sender, EventArgs e)
 {
 EnsureStartup();
 new DataConfig().StartSession();
 }

 private void context_EndRequest(object sender, EventArgs e)
 {
 new DataConfig().EndSession();
 }

 private void EnsureStartup()
 {
 if (!_startupComplete)
 {
 lock (_locker)
 {
 if (!_startupComplete)
 {
 new DataConfig().PerformStartup();
 _startupComplete = true;
 }
 }
 }
 }

 public void Dispose()
 {
 }
 }
}

The DataConfig class (not shown) will create a session and store it in the cache. List-
ing 13.22 shows the SessionCache.cs file as well as an important method from
DataConfig.cs.

using System.Collections;
using System.Web;
using NHibernate;

namespace Infrastructure
{
 public class SessionCache
 {

Listing 13.22 Session cache keeps session in HttpContext items.

Open session when
request starts

End session when
request ends
 private const string SESSION_KEY = "NHIBERNATE_SESSION";

343Data access with NHibernate

 private static readonly IDictionary _cacheStore = new Hashtable();

 public ISession GetSession()
 {
 var session = (ISession) GetCacheStore()[SESSION_KEY];
 return session;
 }

 public void CacheSession(ISession session)
 {
 GetCacheStore()[SESSION_KEY] = session;
 }

 private static IDictionary GetCacheStore()
 {
 if (HttpContext.Current != null)
 return HttpContext.Current.Items;

 return _cacheStore;
 }
 }
}

private void InitializeRepositories()
{
 Func<IVisitorRepository> builder =
 () => new VisitorRepository();
 VisitorRepositoryFactory.RepositoryBuilder = builder;
}

Now that we have a session factory, and we have a session, our application can call NHi-
bernate and communicate with the database. Aside from the NHibernate initialization,
we have the initialization of the VisitorRepositoryFactory. In CodeCampServer, we
use StructureMap as our IoC container. IoC tools provide these factories automatically,
but because this sample doesn’t leverage the IoC container, we had to provide this
startup logic explicitly. There are several ways to do that. Another popular way is to
declare an interface for the factory and keep an implementation around. Use your
judgment when choosing a technique. The important thing is that no project should
reference the Infrastructure project. We have kept NHibernate completely off to the
side so that the rest of the application doesn’t care how the data access is happening.

 There is one final missing piece required before we can run this application from
Visual Studio using CTRL + F5. The web.config file refers to a class in the Infrastruc-
ture project, but because there is no reference, the Infrastructure assembly will not be
in the bin folder of the website. We could copy it explicitly every time we compile, but
that will get tiresome. The solution is to have Visual Studio copy it every time it’s com-
piled by adding the following lines to the Infrastructure.csproj file as a post-build
event such as the command in listing 13.23.

xcopy /y ".*.dll" "..\..\..\UI\bin\"
xcopy /y ".\log4net.config" "..\..\..\UI\"

Listing 13.23 Post-build event copies assemblies and config files.

Part of
DataConfig.cs
xcopy /y ".\hibernate.cfg.xml" "..\..\..\UI\bin\"

344 CHAPTER 13 Recipes

By setting up the three commands shown in listing 13.23, we have configured the
Infrastructure project to copy two important configuration files as well as the neces-
sary binaries to the UI project’s bin folder. Not only will the Infrastructure assembly be
copied, the NHibernate assemblies will be copied as well. This ensures that when the
UI project is run from Visual Studio, you will be greeted with a running application
that is saving and showing visitors as in figure 13.15.

Because of this post-build step, the application has all the required assemblies and
configuration files. This reduces the pain of copying these files manually every time
they change. This is just one type of automation required when you truly commit to
decoupling your applications.

13.3.7 Wrapping up data access with NHibernate

In this recipe, you have seen how to structure your solution, configure NHibernate,
use the repository pattern from ASP.NET MVC, and wire up loosely coupled code at
runtime. This recipe presents a vastly simplified example, but the patterns contained
within are appropriate in medium-to-large applications as well.

 Configuring and using NHibernate is easy. It’s also easy to couple to it and get in
trouble. Whether it’s NHibernate or any other data access library, do not couple your

Figure 13.15 The application works as expected after being wired together.

345Designing views with the Spark view engine

application to it. Keep your core clean and your UI separated. All data access should
be behind interfaces and tested separately. For more advanced usages of NHibernate
with ASP.NET MVC, you can open the CodeCampServer solution, which is included
with this book’s code download at www.manning.com/ASP.NETMVCinAction.

13.4 Designing views with the Spark view engine
By default, an ASP.NET MVC application uses the WebFormViewEngine to locate and
render views. But we are not forced to use Web Forms to design and render our views.
One of the extension points of ASP.NET MVC is the ability to swap out the default
IViewEngine for a different implementation. With a different view engine, we get a
different experience in defining and developing views. Popular alternative view
engines supported in ASP.NET MVC through various open source efforts include

■ Brail
■ NHaml
■ NVelocity
■ Spark

But why would we want to investigate other view engines? One issue with the WebForm-
ViewEngine is that you do not have many options for server-side coding except with
complex languages such as C# and VB.NET. Although these languages are quite pow-
erful, seeing code interspersed with markup is ugly. Creating a simple loop of HTML
requires a foreach loop and curly braces mixed with our HTML tags. For more com-
plex view logic, it becomes nearly impossible to understand what is going on. The
WebFormViewEngine suffices in many situations, but it’s obvious that it was not built
with MVC-style applications in mind, where we are almost guaranteed to need code in
our views. Although this code is strictly view-centric, it’s still unavoidable.

 These alternative view engines are designed to be view engines, rather than hold-
overs from the Web Forms days. Each is optimized for designing an MVC view, and
many are ported versions of other, established view engines for other, established MVC
frameworks. For example, NHaml is a port of the popular (and extremely terse) Haml
view engine. Another view engine, designed for both ASP.NET MVC and MonoRail, is
Spark (http://sparkviewengine.com/). Spark provides a unique blend of C# code in
line with HTML, disguised as XML elements and attributes. There are disadvantages to
some view engines, such as the lack of IntelliSense and a slightly less integrated feel in
Visual Studio. Spark provides integration with Visual Studio, including IntelliSense
and a view compiler. The view compiler ensures that at least we do not have to wait for
runtime exceptions to expose typos and bugs in our views. In this section, we examine
the major features of Spark to see the advantages it has over the default view engine.
But first, we’ll walk through the installation and configuration process.

13.4.1 Installing and configuring Spark

The latest release can be found at Spark’s CodePlex site, at http://sparkviewengine.

codeplex.com/. The release includes the following:

http://sparkviewengine.com/
http://sparkviewengine.codeplex.com/
http://sparkviewengine.codeplex.com/
http://www.manning.com/ASP.NETMVCinAction

346 CHAPTER 13 Recipes

■ The Spark assemblies we need in our MVC project
■ Documentation
■ Samples
■ Installer for Visual Studio IntelliSense

To get Spark running in our MVC project, we
need only the binaries. However, the Intel-
liSense is quite helpful, so we’ll run the
installer before launching Visual Studio.
Next, we add references to both the Spark
and Spark.Web.Mvc assemblies, shown in fig-
ure 13.16.

 With our Spark assembly references
added to our project, we can configure ASP.
NET MVC to use Spark as our view engine.
Spark has additional configuration, which
we can either place in our Web.config file or
in code. For this example, we’ll configure
Spark in code, but the Spark documentation
has full examples of both options. Our Spark
configuration is shown in listing 13.24.

var settings = new SparkSettings()
 .SetDebug(true)
 .AddAssembly("SparkViewExample")
 .AddNamespace("System")
 .AddNamespace("System.Collections.Generic")
 .AddNamespace("System.Linq")
 .AddNamespace("System.Web.Mvc")
 .AddNamespace("System.Web.Mvc.Html");

ViewEngines.Engines.Add(new SparkViewFactory(settings));

We place the code into the Application_Start method in our Global.asax.cs file, as
the Spark configuration and MVC view engine configuration only need to happen
once per application domain. In the first section, we create a SparkSettings object,
configuring the compilation mode, and adding our project assembly and various
assemblies for compilation. This section should look similar to configuring the Web-
FormViewEngine in our Web.config file. Next, we add a new SparkViewFactory
instance to the System.Web.Mvc.ViewEngines.Engines collection. The ViewEngines
class allows additional view engines to be configured for our application. To the
SparkViewFactory instance we pass our SparkSettings object created earlier. That is
all it takes to configure Spark! Now that Spark is configured, we can move on to creat-
ing views for our example.

Listing 13.24 Spark configuration code

Figure 13.16 Adding the Spark assembly
references to our project

347Designing views with the Spark view engine

13.4.2 Simple Spark view example

On the controller and model pieces of our MVC application, we won’t see any changes
with our new view engine. We want to show a list of Product model objects, shown in
listing 13.25.

public class Product
{
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
}

Again, the Spark view engine places no specific constraints on our model, nor our
controller action, shown in listing 13.26.

public class ProductController : Controller
{
 public ViewResult Index()
 {
 var products = new[]
 {
 new Product {
 Name = "Toothbrush",
 Description = "Cleans your teeth",
 Price = 2.49m
 },
 new Product {
 Name = "Hairbrush",
 Description = "Styles your hair",
 Price = 10.29m
 },
 new Product {
 Name = "Shoes",
 Description = "Protects your feet",
 Price = 55.99m
 },
 };
 return View(products);
 }
}

We show only a dummy list of products for our Spark views
to display. To create our Spark views, the folder structure is
similar to our structure for other view engines. In the root
Views folder, we create a Product folder to correspond to
our ProductController. Additionally, we create Layouts
and Shared folders, as shown in figure 13.17.

Listing 13.25 Simple Product model

Listing 13.26 A ProductController for displaying Product objects

Create dummy
products

Send products
to the view

Figure 13.17 Complete
folder structure for our
Spark views

348 CHAPTER 13 Recipes

 In Spark, view files use the.spark file extension. This is mainly so that the file exten-
sion doesn’t conflict with other view engines in the IDE or at runtime.

 Spark supports the concept of layouts, which are similar in nature to the Web
Forms master pages. By convention, the default layout name is Application.spark,
found in either the Layouts or Shared folder. To start, we’ll create just a text file in
Visual Studio named Application.spark (instead of a Web Form or other template).
This is shown in figure 13.18.

We choose the Text File template as we don’t want any of the built-in functionality
with something like a Web Forms template; we need only a blank file. Inside our base
layout, we need to place a couple of links as well as provide a placeholder for the
actual child content. Our entire layout is shown in listing 13.27.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/
TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Spark View Example</title>
 <link href="~/Content/Site.css" rel="stylesheet" type="text/css" />
</head>
<body>
 <div class="page">
 <div id="header">

Listing 13.27 Entire Application.spark layout template

Figure 13.18 Adding an Application.spark layout for our views

349Designing views with the Spark view engine

 <div id="title">
 <h1>My MVC Application</h1>
 </div>
 <div id="logindisplay">
Welcome!
 </div>
 <div id="menucontainer">
 <ul id="menu">
 ${Html.ActionLink("Home", "Index", "Home")}
 ${Html.ActionLink("About", "About", "Home")}

 </div>
 </div>
 <div id="main">

 <use content="view"/>

 <div id="footer">
 </div>
 </div>
 </div>
</body>
</html>

The first interesting item is the "link" element linking to our CSS file. It uses the
familiar tilde ("~") notation to note the base directory of our website, instead of rela-
tive path notation ("../../"). We can rebase our website and redefine what the tilde
means in our Spark configuration if need be. This method is helpful in web farm or
content-delivery network (CDN) scenarios. The next interesting item is our familiar
Html.ActionLink calls, but this time, we enclose the code in the ${} syntax. This syn-
tax is synonymous with the <%= %> syntax of Web Forms. However, if we place an excla-
mation point after the dollar sign, using $!{} instead, any NullReferenceExceptions
will have empty content, instead of an error screen. This is one advantage of Spark
over Web Forms, where a null results in an error for the end user, even though miss-
ing values are normal. The last interesting piece of our layout is the <use content=
"view"/> element. The named content section, “view,” defaults to the view name from
our action. In our example, this would be an Index.spark file in a Product folder. We
can create other named content sections, for a header, footer, sidebar, and anything
else we might need in our base layout. Like master pages, we can nest our layouts as
much as our application demands.

 With the layout in place, we can create our action-specific view, shown in listing 13.28.

<viewdata model="SparkViewExample.Models.Product[]" />
<var styles="new [] {'even', 'odd'}" isCurrent="false" />
<h2>Products</h2>
<table>
 <tr>
 <th>Name</th>

Listing 13.28 Spark view for the Index action
 <th>Price</th>

350 CHAPTER 13 Recipes

 <th>Description</th>
 </tr>
 <var i="0">
 <tr each="var product in ViewData.Model" class="${styles[i%2]}">
 <td>${product.Name}</td>
 <td>${product.Price}</td>
 <td>${product.Description}</td>
 <set i="i+1" />
 </tr>
 </var>
</table>

In the Index view, we want to loop through all of the Products in the model, display-
ing a row for each Product. With Web Forms, we would need to put in <% %> code
blocks for our for loop. With Spark, we have cleaner options. First, we use the <view-
data /> element to tell Spark that we are using a strongly typed view, and our model
type is an array of Products. Spark also supports the key-based ViewData dictionary.
Next, we create local styles and isCurrent variables with the <var /> element. Each
attribute name becomes a new local variable, and the attribute value is the value
assigned. These two variables will help us create alternating row styles.

 Next, we put normal HTML in our view, including a header, table, and header row.
With Spark, special Spark XML elements are interspersed with HTML elements, mak-
ing our view look cleaner without C#’s distracting angle brackets. After the header
row, we create a counter variable to help in the alternating row styles. We need to iter-
ate through all the Products in our model, creating a row for each item. In Web
Forms, this is accomplished through a foreach loop. In Spark, we need only to add an
each attribute to the HTML element we want to repeat, giving the snippet of C# code
to iterate in each attribute’s value. The class element in our row element is set to an
alternating style, using a counter to switch between odd and even styles.

 Inside our row, we use the ${} syntax to display each individual product. Because
we installed the Spark Visual Studio integration, we get IntelliSense in our views, as
demonstrated in figure 13.19.

 To complete the alternating row styles, we increment the count using the <set />
element. This element lets us assign values to variables we created earlier in our view.
In addition to the each attribute and <set /> element, Spark provides complex

Figure 13.19 IntelliSense in our Spark views is

possible because of the Visual Studio add-in.

351Summary

expressions for conditional operators (if…else), macros, and more. With our Spark
view complete, our view renders as expected in the browser, as shown in figure 13.20.

 Because of the ASP.NET MVC architecture, we can swap out view engines without
needing to change our controllers or actions. As we saw in this section with the Spark
view engine, many view engines provide a cleaner way to create views in our MVC
application. The Spark view engine gives us a terser, more readable markup, blend-
ing code and HTML seamlessly. Because Spark supports compiling views and Intel-
liSense, we do not need to give up all the nice integration that Web Forms offers. The
decision to choose a different view engine is still quite important, as it has long-term
technical and non-technical ramifications. Alternative view engines should be
another option to investigate for MVC applications, as they offer compelling alterna-
tives to the default WebFormViewEngine.

13.5 Summary
In this chapter, you have seen how the ASP.NET MVC Framework can dovetail with
other libraries and tools. Because this framework is based on interfaces and abstrac-
tions, it’s simple to mesh other libraries and techniques in your web applications.

 Here, we have reviewed client-side extension techniques with jQuery, one way to

Figure 13.20 Our running Spark application
perform client-side validation, a method to leverage NHibernate with an ASP.NET

352 CHAPTER 13 Recipes

MVC application, and an alternate view engine that integrates with the framework as
well as Visual Studio. These recipes can be applied individually or together. They
have several moving parts, so we encourage you to explore the code that comes with
this book. Feel free to use and extend the code as you apply it to your own ASP.NET
MVC applications.

index
Numerics

500 Internal Server Error 246
7zip 5

A

AcceptVerbsAttribute 63, 206
act 21
action 8, 115

single responsibility 45
action filter 138

built-in 138
requires SSL 139
testing 301
using to load common data 165
when to create 274

action naming 292
action parameters 59
ActionController 264
ActionFilterAttribute 63, 166
ActionLink 80
ActionResult 44–46

ContentResult 134
FileResult 134
JsonResult 134
ViewResult 134

ActionView 264
Active Record pattern 239, 248, 260
Active Server Pages. See ASP
ActiveRecord 248

built on top of NHibernate 248
ActiveRecordBase 249, 259

aggregates 27
boundaries 28
root 27

Agile 34
AJAX 47, 195

from scratch 196
helpers 201, 213
Hijax technique 201
HttpHandler 198
request has extra HTTP header 206
return values 200
simple example 196
with ASP.NET MVC 200
with JSON 208
with Web Forms 198
with XML 207

Ajax.ActionLink 213
Ajax.BeginForm 201, 214
AjaxHelper 80
alternating row styles 350
Apache 94
Apache Velocity 141
ApartmentState 305
ApartmentState.STA 305
Application_Start 8
area. See controller
arrange 21
ASP 1
ASP.NET 2

convention for locating views 16
first MVC controller from scratch 14
preferred way to write 3
request pipeline 9
simplified life of a request 10
supports complex web applications 2
353

ActiveRecordMediator 249, 252 using without SP1 4

INDEX354

ASP.NET Dynamic Data 282
ASP.NET MVC

actions not same as in MonoRail 240
alternative to Web Forms 174
does not replace core ASP.NET libraries 3
framework is open-ended 270
views differ from Web Forms 66

ASP.NET MVC Framework
ask for URL 107
filter attributes 63
not all-or-nothing 3

assert 21
AssertActionRedirect 297–298
Asynchronous JavaScript and XML. See AJAX
AuthorizationContext 273
AuthorizeAttribute 63
autocomplete 286
autocomplete plugin, filters local data

structures 314
AutoMapper 5, 87, 281

B

BarCamp 26
belongs_to 262
Bibeault, Bear 203
binder, smart 274
binding 59
Boo 141, 253
Brail 69, 141

uses Boo 141
breadcrumb path 193
brittle tests 311
Builder pattern 252
business applications, long-lived 30

C

cache
dependencies 181
wrapping in our interface 181

caching 179
making Cache testable 180
output 181
page fragment 182

Calendar control 178
calendar picker 286
Castle Project 5, 87, 239, 242, 248

ActiveRecord. See ActiveRecord
frameworks and components collection 130
MonoRail 141, 167
Validators 282
Windsor 49

arranges the dependency chain 131

catch-all, last route defined 105
CGI 1
check-in dance steps 232
Chrome 177, 307
Classic ASP 65
client-side validation 318

never rely on 324
closed generic type 277
code

brittle and unmaintainable 279
test double 52

code blocks, do not mix within strings 157
Code Camp 26
Code Camp Server 92

AttendeesController 135
Conference model 98
creating routes for 108
formatting 157
Hijax technique 201
testing routes 113
workflow example 153

code-behind 2, 66
markup files, do not use 11
MVC Views, do not use 67

CodeCampServer 23, 26, 47, 67
aggregates 27
benefits from Layer Supertype 272
thin controllers 31

codecampserver.org 34
COM, IE wrapper not thread-safe 305
Common Gateway Interface. See CGI
CompanyControllerFactory, two constructors 130
component, creating 163
Conery, Rob 159
Conference 26
continuous integration 232
control

responsibility 66
server 175

Controller
custom FormattableController 135
overridable methods 134
returning JSON results 139
returning XML results 138

controller 3, 8, 10
action 35
action meaning lost in noise 162
adding alternate view formats 208
and dependencies 48
in charge 3
default 9
developer in control of implementing 45
extending 134
flow to view 17
ControllerFactory 130 focus of MVC pattern 44

INDEX 355

controller (continued)
keep small 156
maintainable 295
notion of an action method selector 63
order of execution 63
organizing into areas 167
responsibility in ViewData 73
should be thin 52
taming large actions 153
well-designed 50
without a view 47

controller action 45–47
controller classes, testing 20
controller code, testing 13
controller factory, StructureMap 133
ControllerActionInvoker 167
ControllerBase 134
ControllerBuilder 127, 171
ControllerFactory

Castle Windsor 130
creating custom 125, 128

controllers 271–283
defining additional namespaces for 171
testing 50–55

convention over configuration 256, 259
cookies. See HttpCookies
Core, must remain portable 327
cross-cutting 341
CruiseControl.net 233
CSS 71

classes to report form validation 85
styling autocomplete results 315

curl 92
custom route, designing 289
Cygwin 92

D

dash vs. slash 96
data access integration test concern 336
data access layer 30
data-transfer objects 25
DDD 24

basics 25
divide domain model 27
inside Onion Architecture 327
references 25
repository for each aggregate 29

debugging 185
default application, picking apart 3–14
Demeter, Law of explained 14
dependencies 30, 37
dependency injection. See DI
deployment

batch script 235
bootstrapper 235
installation strategy 219
URL rewriting 229
wildcard mapping 226

design, domain-driven. See DDD
design, hand in hand with testing 50
DI 48
dictionary

single location for key 279
useful 279

dispatch web request to a controller 7
Django 94
domain model

important to application 328
why important 31

domain-driven design. See DDD
domain-specific language. See DSL
DRY principle 256, 259
DSL 253, 258
duplication, fighting 284

E

Eini, Oren 38, 53
entity, key objects 26
entropy 22
environment configurations, managing 234
error page, custom 246
error reporting 85
Evans, Eric 24–25
expressions 286

pointing to a property 288
Extreme Programming 34

F

Factory pattern 252
Feather, Michael 53
filter

action 138, 274, 301
authorization 272
context objects 301
two classes may be overkill 274

filtering, four interfaces provide support 62
filters 62–64
FinalBuilder 218
Firebug 197, 307

invaluable in AJAX development 205
Firefox 177, 191, 307
FireFox 2+ 66
Flash 245

contents short-lived 244

automation 232–236 folder structure basics 67–69

INDEX356

form
HTML 84
rendering 79

form values 57
processed first 58

Fowler, Martin 35, 232

G

GAC 4
Gallio 5

external test runner is Icarus 304
Garret, Jesse James 195
Global.asax 8
Google Suggest 313
GridView 178

H

Haack, Phil 125
HandleErrorAttribute 63
Happy Path 6
Hawley, Matt 191
health monitoring 186
Helicon Tech 229
Hello World 14, 16
HTML, more control over 177
Html.BeginForm() 84
HtmlHelper 283

contains no view helpers 88
extending 88

HttpCookies 184
adding to the response 184

HTX 1, 65
Hu, Ying 25

I

IActionFilter 62, 301
IActionInvoker 167
IAuthorizationFilter 62, 272–273
IBuildManager 69
Icarus 304
IController 14

implemented by a controller 44
IControllerFactory 8, 127
IDC 1, 65
IE 66, 177, 305, 307

browser discarded at teardown 309
HTTP error messages 107
managed by base test class 308

IE8 307
IExceptionFilter 62

IIS 216
mapping new extension 225

IIS 6.0
configuring routes for 226
deploying to 223
URL rewriting 229
using a custom extension 225
with .aspx extension 224

IIS 7.0 217
application pool configuration 222
deploying to 219
URL generation in 222

IModelBinder 36, 59, 84
input validation 282
integration, continuous 232
IntelliSense 142, 284, 289, 333
Internet Explorer. See IE
Internet Information Services. See IIS
inversion of control. See IoC
IoC 37, 49, 129

constructor injection 131
container to construct a controller 50
in controllers 130
tools provide factories automatically 343

Ionic 229
IResultFilter 62
IRouteHandler 8, 120
ISAPI

developing custom filters requires C/C++ 223
filters 223
Rewrite 229–231

IUserSession 273, 301
IView 68, 142

extensibility point 69
single Render operation 68

IViewDataContainer, extensibility point 69
IViewEngine 142

custom implementation 142
extensibility point 69
locating a view 70
supports many master pages 71

IViewLocationCache, extensibility point 69

J

JavaScript
canceling form submissions 204
jQuery library 200
unobtrusive 198
XML and JSON 207

JavaScript Object Notation. See JSON
JetBrains 21

ReSharper 38, 70

IHttpHandler 120 refactor code 164

INDEX 357

jQuery 71, 196
a must for web developers 212
autocomplete text box 312
JavaScript library 200
primer 203

JSON 47, 135
better solution 200
consumed via JavaScript 138
consuming an action from the view 210

K

Katz, Yehuda 203
Keith, Jeremy 198

Hijax technique 201

L

lambda expression 88, 113, 283
aid in refactoring 164
syntax not in ActionLink 157

Law of Demeter 14
explained 199

Layer Supertype 35, 271
create your own 11
gathers common filters 272

layering 45
layout 284

master page in ASP.NET 71
Level, value indicates difficulty of session 27
Lieberherr, Karl 199
Link Helpers 157
LINQ to SQL 30
localization 187

adding an additional culture 190
adding global resources 189
configuring Firefox to prefer a different

language 191
enabling autoculture selection from the

browser 191
getting localized strings 189

log4net 186

M

magic strings 286
maintainable 18
manual testing 303
mapping, wildcard 227
MapRoute 120
Marinescu, Floyd 25
Martin, Bob 155
master page 12, 71, 267

rendering only responsibility 19
strongly typed view 19

MbUnit 50
imbed images into test report 307
unit testing framework 304

menu control 176
renders in Firefox and IE 177

MicroKernel. See Windsor
Microsoft

and lambda expression syntax 157
Patterns and Practices 282
Reference Symbol Servers, debug framework

code 128
migration script 257
MIME type 93
mocks 53
Model 75
model binder 303

having confidence in 300
loading persistent objects 276
replace default 275
testing 298, 301

model presentation 31
ModelBinding 36
ModelBindingContext, retrieve request value

from 277
ModelState 283, 297
ModelStateDictionary 85
Model-View-Controller pattern. See MVC pattern
MonoRail 58, 167, 239, 248–255

actions not same as in ASPNET MVC 240
configuring to use Windsor integration 254
FilterAttribute 243
filters 242
Flash 244
layouts 241
NVelocity 240
PropertyBag 240
rescues 246

Mozilla Firefox 191
MSTest 13, 50

remove references 20
MVC application hosting requirements 217
MVC Futures 286

magic string usage remains 289
MVC pattern

controller is focus 44
separation of concerns 294

MVC View, renders top to bottom 66
MVC website, files needed 218
MvcContrib 5, 7–8, 17, 289, 292

alternatives to view engines 12
base classes 11
can be nested 284 fluent route testing 112

INDEX358

MvcContrib (continued)
makes testing routes easier 290
SimplyRestful 100
test helpers 292
view helpers 13
ViewDataExtensions 46

MvcRouteHandler 7–8, 120

N

Naak 5
naming, action 292
NAnt 5, 233–236

XCOPY deployment 218
NAntContrib 233
NBehave 5, 50
NestedAttribute 250
.NET 3.5

LINQ expressions 88
SP1 115

NewtonSoft 208
NHibernate 5, 184, 248

configuration options exposed 250
data access with 325
library, not a framework 330
needs configuration 331

Nilsson, Jimmy 25, 334
NLog 186
NonActionAttribute 63
NUnit 5, 13, 20, 36, 50
NVelocity 17, 69, 141

drawbacks 142

O

object-object mapper. See OOM
object-relational mapping. See ORM
objects, data-transfer 25
Onion Architecture 327
OOM 281
Oracle, sequence functionality 334
ORM 248
Osherove, Roy 55
output caching 181
OutputCacheAttribute 63

P

Page_Load, large files 2
parameters

action 59
querystring 58

partial view
defined 76
who decides which to use 78

partials
creating 159
perfect for small markup 285

patterns
Active Record 248
Builder 252
Factory 252
Layer Supertype 271
MVC 3
Server Page 65
Service Locator 130
Session-per-Request 184

Perl 94
permalink, keep simple and clean 95
persistence 29
personalization 187

building SQL tables for 187
configuring 187
display profile data 188
editing profile data 188

PHP 94
pit of success 66
posting HTML forms to server 84
presentation layer, book focus on 30
presentation model 31, 33

key element of presentation layer 33
object model that serves a screen 32
part of presentation layer 32
responsibilities 31
for specific needs 31

presentation object 33
Principle of Least Knowledge. See Law of Demeter
progressive enhancement 203
projecting from domain model 33
property bag, ViewData 73
PropertyBag 239, 244
Python 94

Q

querystring parameters 58
QUnit 304

R

RAD frameworks 256
Rails 94

See also Ruby on Rails
Rails Components 165
rapid application development. See RAD
parameters, action 59 Red Gate, .Net Reflector 11

INDEX 359

RedirectController, testing 50
reference implementation 326
Reflector 127
regression testing 303
RenderAction 163

alternative to filter and partial combo 285
rendering, places to customize behavior 69
repository 29, 297, 329

common base class 278
Save method not called 297
use to load entity 276

representational state transfer. See REST
request storage 184
request, partial 284
rescue 246
rescues 246
ReSharper 21, 38, 70, 304

refactor code 164
resources 188
REST 100
RESTful 293
Rhino Mocks 5, 53, 183, 296

creates a subclass at runtime 303
CreateStub method 303
generates derived classes on the fly 38
not always appropriate 54
supports dynamic stubs and mocks 54
testing a route 111

route 7, 35, 105, 109, 115, 289, 294
components 101
configuring to use .aspx extension 224
configuring to use .mvc extension 225
custom static 103
designing custom handler 116
first matched, first used 124
front door of web application 92
generic 8
testing with NUnit 111
testing with Rhino Mocks 111

RouteConfigurator 35
RouteData 122
RouteHandler, implementing 122
RouteTable 35
Routing 4
routing 95

available to all ASP.NET applications 7
custom dynamic 103
decouples URLs 95
default values 109
extending 120
generating URLs 107
IIS6 workaround 104
inbound 94
outbound 94, 115

runtime diagnostics 122
with existing ASP.NET projects 115

row style, alternating 350
Ruby 94
Ruby on Rails 58, 135, 239, 255–268

ActionPack 239, 264
Active Record 260
CodeCampServer 264
console is a sandbox 259
creating application from the command

line 256
generators 257
harvested framework 255
migration 258
removed Components from Core 165

S

Safari 177
Sanderson, Steve 325
screenshot, capture if test failing 309
Search Engine Optimization. See SEO
Selenium 13, 70, 304
SEO 99
separated view models 280
separation of concerns. See SoC
server controls 175
Server Page pattern 65
Service Locator pattern 130

need to fetch dependencies 166
session factory, creates all sessions 334
session state 183
Session-per-Request pattern 184
Silverlight 29
SimplyRestful 100
single responsibility principle. See SRP
single-threaded apartment. See STA
site maps 192
slash vs. dash 96
Smalltalk 238
smart binders 274
SmartController 271

filters 272
SmartDispatcherController 240, 243
SoC 8, 52

critical to long-term maintainability 326
key best practice 17

solution templates 5
Spark 69

advantage over Web Forms 349
Spark view engine 345
SQL Server 218

identity functionality 334

regular expressions 114 SQL Server 2005 332

INDEX360

SRP 8, 152
common violation 155

STA 305
starter project 9–10

basic layout and CSS 9
master page 12
objects are simple strings 11

state management 179
state session 183
storage request 184
string, hardcoded 279–280
strings, magic 286
StructureMap 5, 49
stubs 53
subcontrollers 284
System.Web.Abstractions 4
System.Web.Abstractions.dll 4
System.Web.Mvc 7–8, 19

T

T4 templates 145
Tarantino 5, 59
TDD 22, 25, 36
Team Foundation Server 304
TechFest 26
technical debt 30
templates 145

solution 5
test

adding 299
brittle 311
UI 303

test double 52, 296
stubs and mocks 53

test suite 22
test-driven development. See TDD
TestHelper 292
testing 20, 289, 294, 303–311

automated 50
hand in hand with design 50
login screen 305
manual 303
regression 303
with WatiN 304

testing routes 289
tests, running in parallel 304
TextBox 175
TextBoxWithLabelFor 288
Trace.axd 186
tracing 185
TreeView control 178
Twitter 97
type

closed generic 277

U

UI testing tools 303
UI tests 303

automating 304
underscore, why use 161
unit test 295, 298, 301

arrange, act, assert flow 21
check only a single class 295
creating automated 21
do not call out of process 50
no shared global variables 55
NUnit test fixture 36
a simple controller 14
substitute object provided 31

unit testing 2, 31
calling action methods directly 167
do not allow out-of-process calls 55
frameworks 274
templates 13

unit testing frameworks 304
Unix curl command 92
URL

allow parameters to clash 96
designing schema 95–99
extending routing 120
make hackable 96
rewriting 94, 229
slug 209
take care when restructuring 193
taking control with routing 94
ugly and nonintuitive 224

UrlRouteModule 120
UrlRoutingModule 3
user story 34

V

ValidateAntiForgeryTokenAttribute 63
ValidateInputAttribute 63
validation 85, 281, 283

Castle Project 87
form errors 85
keep away from controller 86
model state errors 296
run against a model 283

Validation Application Block 282
validation error

handling in controller action 283
if none 298

value objects 26
Verheul, Dylan 313
view 283–289

affected by code choice 141
difficult to unit test 81
open generic 277 enforce strongly typed 284

INDEX 361

view (continued)
how selected 73
lives with parent module 67
master pages can be nested 71
multiples do not share ViewDataDictionary

instances 76
needs ViewData to get the information to

render 76
partials help decompose complex screen 76
responsibility 12
segment into partials 156
simple or complex 56
strongly typed 283
volume of string identifies used 88

view basics, overview 69–79
view engine

adding additional 171
Brail 141
creating custom 141
in MonoRail 240
main components 142
not all support view specifying master 19
NVelocity 141
replacing 16
Spark 345
Web Forms 12

view helpers 13, 79
possibilities are endless 159
referencing CSS stylesheets 158
referencing javascript includes 158
strongly typed lambda helpers 157
using and creating 156

view model objects, data oriented 318
view model, separated 280
view name

corresponds to action names 293
same as action name 46

View Page 16
ViewData 12, 45–46, 66, 272, 279, 296

options for passing 61
property a dictionary 61
sending objects to a view 73

ViewEngineResult 168
ViewModel 281

advantage of separated 280
ViewPage 67
ViewResult 68, 278
ViewState 2

no longer necessary 2
Visual Studio 2, 50

customizing 145
T4 templates 145
Unit Test framework 149

Visual Studio 2008 Professional 13
Visual Studio 2008 SP1 4
Visual T4 Editor for Visual Studio 2008 Commu-

nity Edition 148
Visual Web Developer Express SP1 4

W

WatiN 5, 13, 70, 304
communicating with IE 305
IE 305
testing with 304

Watir 13, 70, 304
Web Application Projects 4
Web Application Testing In .NET. See WatiN
Web Developer Toolbar 307
Web Forms 2

adding HttpCookies 184
ASP.NET MVC views differ 66
built on concept of a control 66
emphasizes web controls 79
ended URL 95
mandate strict convention for URLs 7
master pages 72
porting from 67
use regular expressions 306
view engine 12

Web Forms Framework 2
WebFormView 68–69
WebFormViewEngine 67, 159, 168

support out of the box 70
wildcard mapping, side effect 227
Windsor 239, 248

Castles IoC container 253
MonoRail integration 253
See also Castle Windsor

WinForms 29
won 282
WPF 29

X

XCOPY deployment 218, 233
xUnit 50
xVal Validation Framework 325

Y

WebFormViewEngine 70 yellow screen of death 246, 248

ISBN 13: 978-1-933988-62-7
ISBN 10: 1-933988-62-2

9 7 8 1 9 3 3 9 8 8 6 2 7

99445

A
SP.NET MVC implements the Model-View-Controller
pattern on the ASP.NET runtime. It works well with
open source projects like NHibernate, Castle, Structure-

Map, AutoMapper, and MvcContrib.

ASP.NET MVC in Action is a guide to pragmatic MVC-based
web development. Aft er a thorough overview, it dives into
issues of architecture and maintainability. Th e book assumes
basic knowledge of ASP.NET (v. 3.5) and expands your exper-
tise. Some of the topics covered:

How to eff ectively perform unit and full-system tests.
How to implement dependency injection using Structure-
Map or Windsor.
How to work with the domain and presentation models.
How to work with persistence layers like NHibernate.

Th e book’s many examples are in C#.

Jeffrey Palermo is co-creator of MvcContrib. Jimmy Bogard
and Ben Scheirman are consultants and .NET community
leaders. All are Microsoft MVPs and members of ASPInsiders.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/ASP.NETMVCinAction

$44.99 / Can $62.99 [INCLUDING eBOOK]

ASP.NET MVC IN ACTION

ASP.NET/WEB DEVELOPMENT

Jeffrey Palermo Ben Scheirman Jimmy Bogard
FOREWORD BY PHIL HAACK

“Shows how to put all the
 features of ASP.NET MVC
 together to build a great
 application.”
 —From the Foreword by Phil Haack
 Senior Program Manager
 ASP.NET MVC Team, Microsoft

“Th is book put me in control of
 ASP.NET MVC.”
 —Mark Monster
 Soft ware Engineer, Rubicon

“Of all the off erings, this one
 got it right!”
 —Andrew Siemer
 Principal Architect, OTX Research

“Highly recommended for
 those switching from Web
 Forms to MVC.”
 —Frank Wang, Chief Soft ware
 Architect, DigitalVelocity LLC

M A N N I N G

SEE INSERT

	Front cover
	brief contents
	contents
	foreword
	preface
	acknowledgments
	Jeffrey Palermo
	Ben Scheirman
	Jimmy Bogard

	about this book
	Who should read this book?
	Roadmap
	Code conventions and downloads
	Author Online

	about the authors
	About the technical reviewers

	about the cover illustration
	Getting started with the ASP.NET MVC Framework
	1.1 Picking apart the default application
	1.1.1 Creating the project
	1.1.2 Your first routes
	1.1.3 Running with the starter project

	1.2 Your first ASP.NET MVC controller from scratch
	1.3 Our first view
	1.4 Ensuring the application is maintainable
	1.5 Testing controller classes
	1.6 Summary

	The model in depth
	2.1 Understanding the basics of domain-driven design
	2.2 Domain model for this book
	2.2.1 Key entities and value objects
	2.2.2 Aggregates
	2.2.3 Persistence for the domain model

	2.3 Presentation model
	2.3.1 Presentation model responsibilities
	2.3.2 Projecting from the domain model

	2.4 Working with the model
	2.4.1 Crafting the route
	2.4.2 Crafting the controller action
	2.4.3 Test-driving the feature
	2.4.4 Finishing the view

	2.5 Summary

	The controller in depth
	3.1 The controller action
	3.2 Simple controllers do not need a view
	3.3 Testing controllers
	3.3.1 Testing the RedirectController
	3.3.2 Making dependencies explicit
	3.3.3 Using test doubles, such as stubs and mocks
	3.3.4 Elements of a good controller unit test

	3.4 Simple actions and views
	3.5 Working with form values
	3.6 Processing querystring parameters
	3.7 Binding more complex objects in action parameters
	3.8 Options for passing ViewData
	3.9 Filters
	3.10 Summary

	The view in depth
	4.1 How ASP.NET MVC views differ from Web Forms
	4.2 Folder structure and view basics
	4.3 Overview of view basics
	4.3.1 Examining the IViewEngine abstraction
	4.3.2 Understanding master pages in the ASP.NET MVC Framework
	4.3.3 Using ViewData to send objects to a view
	4.3.4 Partial views can help decompose a complex screen

	4.4 Leveraging the view to create dynamic screens
	4.4.1 Rendering forms with view helpers and data binding
	4.4.2 Posting HTML forms back to the server
	4.4.3 Validation and error reporting
	4.4.4 Extending HtmlHelper

	4.5 Summary

	Routing
	5.1 What are routes?
	5.1.1 What’s that curl command?
	5.1.2 Taking back control of the URL with routing

	5.2 Designing a URL schema
	5.2.1 Make simple, clean URLs
	5.2.2 Make hackable URLs
	5.2.3 Allow URL parameters to clash
	5.2.4 Keep URLs short
	5.2.5 Avoid exposing database IDs wherever possible
	5.2.6 Consider adding unnecessary information

	5.3 Implementing routes in ASP.NET MVC
	5.3.1 URL schema for an online store
	5.3.2 Adding a custom static route
	5.3.3 Adding a custom dynamic route
	5.3.4 Catch-all routes

	5.4 Using the routing system to generate URLs
	5.5 Creating routes for Code Camp Server
	5.6 Testing route behavior
	5.7 Using routing with existing ASP.NET projects
	5.8 Summary

	Customizing and extending the ASP.NET MVC Framework
	6.1 Extending URL routing
	6.2 Creating your own ControllerFactory
	6.2.1 The ControllerFactory implementation
	6.2.2 Leveraging IoC for your controllers

	6.3 Extending the controller
	6.3.1 Creating a FormattableController
	6.3.2 Working with action filters

	6.4 Creating a custom view engine
	6.5 Customizing Visual Studio for ASP.NET MVC
	6.5.1 Creating custom T4 templates
	6.5.2 Adding a custom test project template to the new project wizard

	6.6 Summary

	Scaling the architecture for complex sites
	7.1 Taming large controller actions
	7.2 Whipping views into shape
	7.2.1 Using and creating view helpers
	7.2.2 Creating partials
	7.2.3 Creating components

	7.3 Using action filters to load common data
	7.4 Organizing controllers into areas
	7.4.1 Capturing the area for a request
	7.4.2 Creating a view engine with support for areas
	7.4.3 Tying it all together

	7.5 Summary

	Leveraging existing ASP.NET features
	8.1 ASP.NET server controls
	8.1.1 The TextBox
	8.1.2 Other common controls
	8.1.3 The GridView
	8.1.4 Where do I get the good stuff?

	8.2 State management
	8.2.1 Caching
	8.2.2 Session state
	8.2.3 Cookies
	8.2.4 Request storage

	8.3 Tracing and debugging
	8.3.1 TraceContext
	8.3.2 Health monitoring

	8.4 Implementing personalization and localization
	8.4.1 Leveraging ASP.NET personalization
	8.4.2 Leveraging ASP.NET localization

	8.5 Implementing ASP.NET site maps
	8.6 Summary

	AJAX in ASP.NET MVC
	9.1 Diving into AJAX with an example
	9.2 AJAX with ASP.NET Web Forms
	9.3 AJAX in ASP.NET MVC
	9.3.1 Hijaxing Code Camp Server
	9.3.2 AJAX with JSON
	9.3.3 Adding alternate view formats to the controller
	9.3.4 Consuming a JSON action from the view
	9.3.5 AJAX helpers

	9.4 Summary

	Hosting and deployment
	10.1 Deployment scenarios
	10.2 XCOPY deployment
	10.3 Deploying to IIS 7
	10.4 Deploying to IIS 6 and earlier
	10.4.1 Configuring routes to use the .aspx extension
	10.4.2 Configuring routes to use a custom extension
	10.4.3 Using wildcard mapping with selective disabling
	10.4.4 Using URL rewriting

	10.5 Automating deployments
	10.5.1 Employing continuous integration
	10.5.2 Enabling push-button XCOPY deployments
	10.5.3 Managing environment configurations

	10.6 Summary

	Exploring MonoRail and Ruby on Rails
	11.1 MonoRail
	11.1.1 Feature overview
	11.1.2 ActiveRecord and Windsor
	11.1.3 MonoRail and Castle features available in ASP.NET MVC

	11.2 Ruby on Rails
	11.2.1 Convention over configuration and “the Rails way”
	11.2.2 Active Record
	11.2.3 ActionPack

	11.3 Summary

	Best practices
	12.1 Controllers
	12.1.1 Layer Supertype
	12.1.2 Filters
	12.1.3 Smart binders
	12.1.4 Hardcoded strings
	12.1.5 Separated view models
	12.1.6 Validation

	12.2 Views
	12.2.1 Strongly typed views
	12.2.2 Fighting duplication
	12.2.3 Embracing expressions

	12.3 Routes
	12.3.1 Testing routes
	12.3.2 Action naming

	12.4 Testing
	12.4.1 Controller unit tests
	12.4.2 Model binder unit tests
	12.4.3 Action filter unit tests
	12.4.4 Testing the last mile with UI tests

	12.5 Summary

	Recipes
	13.1 jQuery autocomplete text box
	13.2 Automatic client-side validation
	13.3 Data access with NHibernate
	13.3.1 Functional overview of reference implementation
	13.3.2 Application architecture overview
	13.3.3 Domain model—the application core
	13.3.4 NHibernate configuration—infrastructure of the application
	13.3.5 UI leverages domain model
	13.3.6 Pulling it together
	13.3.7 Wrapping up data access with NHibernate

	13.4 Designing views with the Spark view engine
	13.4.1 Installing and configuring Spark
	13.4.2 Simple Spark view example

	13.5 Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

	Back cover

